
Solutions Final exam in DRE 7017 Mathematics, Ph.D.
Date October 2nd, 2018 at 0900 - 1200

Question 1.

(a) We have that

A+ I =

1 1 0
0 1 1
1 1 0

 ⇒ (A+ I)2 =

1 2 1
1 2 1
1 2 1


This means that (A + I)2 · v = 0 is given by v1 + 2v2 + v3 = 0, with v2, v3 as free variables,
and v1 = −2v2 − v3 basic. The solutions can be written as span(w1,w2), since

v =

v1v2
v3

 =

−2v2 − v3
v2
v3

 = v2

−2
1
0

+ v3

−1
0
1

 = v2w1 + v3w2

It is clear that w1 is not an eigenvector for A, since Aw1 =
(
1 0 −1

)T 6= λw1 for any λ.
(b) Clearly, λ1 = −1 is an eigenvalue since det(A + I) = 0. We find the other eigenvalues by

λ1 +λ2 +λ3 = tr(A) = −1 and λ1λ2λ3 = det(A) = 1, which gives λ2 +λ3 = 0 and λ2λ3 = −1,
or λ2 = −1 and λ3 = 1. Alternatively, the characteristic equation is∣∣∣∣∣∣

−λ 1 0
0 −λ 1
1 1 −1− λ

∣∣∣∣∣∣ = 0

This gives −λ(−λ(−1−λ)−1)−1(−1) = λ2(−λ−1)+λ+1 = (λ+1)(−λ2+1) = 0 by cofactor
expansion along the first row, or (1 + λ)(1− λ)(1 + λ) = 0. The eigenvalues are λ1 = λ2 = −1
and λ3 = 1. We have that E−1 = span(w) by a direct computation: Using the matrix A + I
above, we obtain that v2 + v3 = 0, or v2 = −v3, and v1 + v2 = 0, or v1 = −v2 = v3, with v3
free, and

v =

v1v2
v3

 =

 v3
−v3
v3

 = v3

 1
−1
1

 = v3w

with w = w2 − w1. Since E−1 has dimension 1, when λ = −1 has multiplicity 2, A is not
diagonalizable.

(c) An eigenvector v satisfies (A − λI)v = 0, and is therefore a generalized eigenvector with
n = 1. We see that there is an eigenvector w3 such that E1 = span(w3), since λ = 1 has
multiplicity 1. Since eigenvectors are generalized eigenvectors, the set {w1,w2,w3} is a set of
three generalized eigenvectors for A. Explicitly, we may chose

w3 =

1
1
1

 ⇒

∣∣∣∣∣∣
−2 −1 1
1 0 1
0 1 1

∣∣∣∣∣∣ = 2 + 2 = 4 6= 0

and the non-zero determinant proves that {w1,w2,w3} are linearly independent generalized
eigenvectors for A.

Question 2.

(a) The set D is convex since it is the half-plane x ≥ 0, with a straight line as the boundary.
Explicitly, if two points P,Q in D, such that xP , xQ ≥ 0, then all points in the line segment
[P,Q] satisfy x ≥ 0 as well. To check if f is concave, we compute

f ′x =
1

2
x−1/2y =

y

2
√
x
⇒ f ′′xx = −1

4
x−3/2y =

−y
4x
√
x

This means that the first principal minor D1 = f ′′xx of H(f) can take both positive and negative
values on D. For example, D1(1, 1) = −1/4 and D1(1,−1) = 1/4. Therefore, f is not concave.
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(b) The set f(D) = R since f(1, a) = a and (1, a) ∈ D for any real number a. This is not a
compact set, since it is not bounded.

(c) We have that the set Uf (a) is given by the inequality
√
x · y ≥ a, and this can be written as

y ≥ a/
√
x when x 6= 0. The function f(x) = a/

√
x has derivatives

f ′ =
−a

2x
√
x
⇒ f ′′ =

3a

2x2
√
x
> 0

If a > 0, then x > 0, and f is convex. This implies that Uf (a) is a convex set. If a ≤ 0,
then Uf (a) is the union of the y-axis, and the set of points over the graph of f when x > 0.
In this case, Uf (a) is not a convex set. For example, P = (2, 0) and Q = (0, 2a − 2) are in
Uf (a) when a < 0, but the midpoint (1, a− 1) on the line segment [P,Q] is not in Uf (a) since√

1 · (a− 1) < a. We conclude that Uf (a) is a convex set if and only if a > 0.
(d) Let E be the set of points satisfying the constraint x2 + y2 ≤ 2x. This is a compact set since

x2 − 2x+ y2 ≤ 0 gives

x2 − 2x+ 1 + y2 ≤ 1 ⇒ (x− 1)2 + y2 ≤ 1

which is a circle with center (1, 0) of radius 1, and the points inside that circle. Hence f attains
a max and a min on E. Since (x, y) ∈ E if and only if (x,−y) ∈ E, and f(x,−y) = −f(x, y),
it follows that the values attained are in the interval [−M,M ] for some number M . Moreover,
M is attained for y > 0, and −M for y < 0. To find M , we consider the max problem, after
using φ(x) = x2 on the objective function f , to simplify the computations (which we can do,
since φ is monotonously increasing when y > 0). We obtain the problem

maxxy2 when x2 + y2 − 2x ≤ 0

This is a Kuhn-Tucker problem in standard form. We write L = x2y − λ(x2 + y2 − 2x), and
obtain the first order conditions

L′x = y2 − λ(2x− 2) = 0, L′y = 2xy − λ(2y) = 0

together with the constraint x2+y2−2x ≤ 0 and the complementary slackness condition λ ≥ 0
and λ(x2 + y2 − 2x) = 0. When λ = 0, we get y = 0 and 0 < x < 2, which gives a condidate
point with xy2 = 0. When λ > 0, we get y = 0 or x = λ, and y = 0 gives λ = 0, a contradiction.
Therefore, x = λ, which gives y2 = x(2x − 2) = 2x2 − 2x and x2 + (2x2 − 2x) − 2x = 0, or
3x2− 4x = 0. This gives x = 0 or x = 4/3, and x = 0 gives λ = 0, a contradiction. Therefore,

x = 4/3, y = ±
√

8/9 = ±2
√

2/3, and λ = x = 4/3. At these candidate points, we have that
xy2 = 32/27. This solves the maximum problem (there are no points in E where NDCQ fails,

since E is bounded by a circle), and therefore we have that M =
√

32/27 = 4
√

6/9. It means

that the original minimum problem has minimum value −M = −4
√

6/9, and the minimizer is
(x, y) = (4/3,−2

√
2/3).

Question 3.

(a) Let us write A = (v1|v2| . . . |vn). Since x ∈ ∆n−1, we have that xi ≥ 0 and x1 + · · ·+ xn = 1.
We consider the vector

y = A · x = x1v1 + · · ·+ xnvn

and must show that y ∈ ∆n−1. Since aij ≥ 0 and xi ≥ 0, it follows that each component
yi of y = A · x is non-negative, or yi ≥ 0. Moreover, since each vi has column sum 1, and
x1 + · · ·+ xn = 1, it follows that y = Ax has column sum y1 + · · ·+ yn = 1. This means that
y ∈ ∆n−1, and the map is well-defined.

(b) It is clear that ∆n−1 is compact: It is clearly closed, since it is given by equations and closed
inequalities, and it is bounded since 0 ≤ xi ≤ 1 for all i. It is non-empty as well, since
(1, 0, 0, . . . , 0) ∈ ∆n−1. We need to show that it is convex to apply Brouwer’s result: When
x,y ∈ ∆n−1, we have that all points on the line segment [x,y] are given by

z = λx + (1− λ)y ∈ ∆n−1

with 0 ≤ λ ≤ 1, and all point of this form is in ∆n−1 since zi = λxi + (1 − λ)yi ≥ 0 and
z1 + · · · + zn = λ · 1 + (1 − λ) · 1 = 1. This shows that ∆n−1 is convex, and it follows by
Brouwer’s fixed point theorem that A : ∆n−1 → ∆n−1 has a fixed point.
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(c) A fixed point is an eigenvector with λ = 1, so we compute E1 for the given matrix. This gives
the echelon form

A− I =

−1 0.6 0.5
0.7 −0.6 0.5
0.3 0 −1

→
−1 0.6 0.5

0 −0.18 0.85
0 0.18 0.85

→
−1 0.6 0.5

0 −0.18 0.85
0 0 0


Hence x3 is free, −0.18x2 + 0.85x3 = 0, or x2 = 85x3/18, and −x1 + 0.6x2 + 0.5x3 = 0, or
x1 = 0.6(85x3/18) + 0.5x3 = 10x3/3. The eigenvectors in E1 that are also in ∆2 must satisfy

x1 + x2 + x3 = 1 ⇒
(

10

3
+

85

18
+ 1

)
x3 =

60 + 85 + 18

18
· x3 =

163

18
· x3 = 1

This gives x3 = 18/163, and the fixed point is therefore given by

(x1, x2, x3) =

(
60

163
,

85

163
,

18

163

)
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