Differential equations - quick and dirty

Elise Hoff Øby
Handelshøyskolen BI/Norwegian School of Management
Institutt for samfunnsøkonomi/Dep. of Economics
Tel.: +4746410780

Contents

1. What is a differential equation? 1
2. Separable differential equations 2
3. First order linear differential equations 4
3.1. Case 1: a and b are constants 5
3.2. Case 2: a is constant, b is a function 5
3.3. Case 3: Both a and b are functions 7
4. Second order linear differential equations 7
5. A note on notation 9
6. Want to know more? 9

1. What is a differential equation?

A differential equation is an equation where a function is the unknown, and where one or more of its derivatives are involved.

Example 1. Find a function $y(x)$ such that $y^{\prime}=1$. This is a differential equation, and we know how to solve it: Integrating with respect to x on both sides of the equation gives

$$
\int y^{\prime}(x) d x=\int 1 d x
$$

which implies

$$
y(x)+C_{1}=x+C_{2}
$$

where C_{1} and C_{2} are real numbers. Isolating $y(x)$ solves the equation:

$$
y(x)=x+\left(C_{2}-C_{1}\right)=x+C
$$

where C is some real number.
Whenever we are asked to prove that a given function is a solution to a given differential equation, we insert the given function into the equation and see that it fits:
Example 2. Prove that $y(x)=e^{5 x}$ is a solution to the differential equation

$$
\begin{gathered}
y^{\prime}-5 y=0 \\
1
\end{gathered}
$$

In our case, $y(x)=e^{5 x}$, and therefore $y^{\prime}(x)=5 e^{5 x}$. Thus

$$
y^{\prime}(x)-5 y(x)=5 e^{5 x}-5 e^{5 x}=0
$$

Thus the given function $y(x)=e^{5 x}$ fits into the given differential equation $y^{\prime}-5 y=0$, and is therefore a solution to the equation.

A function is a solution to a given differential equation of and only if it fits into the equation:

Example 3 (Example 2 continued). Consider the function $y(x)=x^{2}$. Then $y^{\prime}(x)=2 x$ and

$$
y^{\prime}(x)-5 y(x)=2 x-5 x^{2} \neq 0
$$

Thus $y(x)$ does not fit into the equation $y^{\prime}-5 y=0$, and is therefore not a solution to this equation.

2. Separable differential equations

A differential equation on the form

$$
\begin{equation*}
y^{\prime}(x)=f(x) g(y) \tag{1}
\end{equation*}
$$

is called separable.

Example 4.

(a) $y^{\prime}=x \cdot y$. This is a separable differential equation with $f(x)=x$ and $g(y)=y$. We can separate the variable x from the function y : The given equation is equivalent to $\frac{y^{\prime}}{y}=x$
(b) $y^{\prime}=x \cdot y-x$. The right hand side of the equation equals $x(y-1)$, and this is therefore a separable differential equation with $f(x)=x$ and $g(y)=y-1$. Again, we can separate the variable x from the function y : The given equation is equivalent to $\frac{y^{\prime}}{y-1}=x$
So how do we solve separable differential equations? First, we try to solve the differential equation from example 4(a): We must find a function $y(x)$ such that $\frac{y^{\prime}}{y}=x$. Recall that y^{\prime} is short for $\frac{d y}{d x}$, and the equation is

$$
\frac{\frac{d y}{d x}}{y}=x
$$

and pretending that $\frac{d y}{d x}$ is a fraction, we can write this

$$
\frac{d y}{y}=x d x
$$

Integrating on both sides gives

$$
\int \frac{d y}{y}=\int x d x
$$

that is

$$
\ln |y|+C_{1}=\frac{1}{2} x^{2}+C_{2}
$$

Move C_{1} over to the right hand side and let $C=C_{2}-C_{1}$:

$$
\ln |y|=\frac{1}{2} x^{2}+C
$$

and therefore

$$
|y|=e^{\frac{1}{2} x^{2}+C}=|K| e^{\frac{1}{2} x^{2}}
$$

where $|K|=e^{C}$. This implies that

$$
y=K e^{\frac{1}{2} x^{2}}
$$

where K is a real number. We get one solution for every choice of the real number K. If we use the symbols $\frac{d y}{d x}$ for y^{\prime}, the general method for solving separable differential equations looks like this:

General method for solving separable differential equations:
Step 1 You have an equation of the form

$$
\frac{d y}{d x}=f(x) g(y)
$$

Step 2 Separate the variable x from the function y :

$$
\frac{d y}{g(y)}=f(x) d x
$$

Step 3 Integrate:

$$
\int \frac{d y}{g(y)}=\int f(x) d x
$$

Calculate the integrals. You get an equation involving x and y. If possible, isolate y, i.e. express y in terms of x. You get infinitely many solutions, one for each choice of the integration constant C.
Step 4 In addition to the solutions from Step 3, there may be constant solutions. If there exist numbers a such that $g(a)=0$, then $y(x)=a$ is a solution for every such a.

Example 5. Solve the differential equation

$$
y^{2} \frac{d y}{d x}=x+1
$$

Then find the solution that passes through the point $(x, y)=(1,1)$. First of all, this is a separable differential equation, and Step 2 from above becomes

$$
y^{2} d y=(x+1) d x
$$

We integrate:

$$
\int y^{2} d y=\int(x+1) d x
$$

Calculating the integrals gives

$$
\frac{1}{3} y^{3}=\frac{1}{2} x^{2}+x+C
$$

Notice that there should have been a constant of integration on the left hand side, too, but we include this is the C on the right. It is possible to isolate y from this equation:

$$
y=y(x)=\sqrt[3]{3\left(\frac{1}{2} x^{2}+x+C\right)}=\left[3\left(\frac{1}{2} x^{2}+x+C\right)\right]^{\frac{1}{3}}
$$

Every choice of C gives a different solution to the equation. We want to find the unique solution which has a graph passing through the point $(1,1)$. Thus $y(1)$ must be 1 , which implies the equation

$$
\sqrt[3]{3\left(\frac{1}{2}+1+C\right)}=1
$$

A cleaned up version of this is

$$
\sqrt[3]{\frac{9}{2}+3 C}=1
$$

Third power on both sides:

$$
\frac{9}{2}+3 C=1
$$

Solving for C gives

$$
C=\frac{1-\frac{9}{2}}{3}=-\frac{7}{6}
$$

The special solution passing though $(1,1)$ is

$$
y(x)=\sqrt[3]{3\left(\frac{1}{2} x^{2}+x-\frac{7}{6}\right)}
$$

3. First order linear differential equations

A differential equation of the form

$$
\begin{equation*}
y^{\prime}+a(x) \cdot y=b(x) \tag{2}
\end{equation*}
$$

where a and b are continuous functions of x, are called first order linear differential equations. There are three separate cases of such differential equations:
3.1. Case 1: a and b are constants. In this case, equation 2 becomes

$$
y^{\prime}+a y=b \quad \text { where } a \text { and } b \text { are constants, } a \neq 0
$$

We will now perform a trick which nobody expects you to understand how we came up with. Hopefully, you will see the beauty, though: If we multiply both sides of this equation by $e^{a x}$, we get the equation

$$
\begin{equation*}
y^{\prime} e^{a x}+a y e^{a x}=b e^{a x} \tag{3}
\end{equation*}
$$

The factor $e^{a x}$ is called the integrating factor. Now, we recognize the right hand side of equation 3 as the derivative of the product $y e^{a x}$:

$$
\frac{d}{d x}\left(y e^{a x}\right)=y^{\prime} e^{a x}+y\left(e^{a x}\right)^{\prime}=y^{\prime} e^{a x}+a y e^{a x}
$$

Thus equation 3 is equivalent to the equation

$$
\frac{d}{d x}\left(y e^{a x}\right)=b e^{a x}
$$

and integrating both sides gives

$$
y e^{a x}=\int b e^{a x} d x=\frac{b}{a} e^{a x}+C
$$

where C is any constant. Now, we can isolate y on the left hand side:

$$
y=y(x)=\frac{\frac{b}{a} e^{a x}+C}{e^{a x}}=\frac{b}{a}+C e^{-a x}
$$

Notice that there is one solution for every choice of the constant C. To summarize:

$$
y^{\prime}+a y=b \Leftrightarrow y=y(x)=C e^{-a x}+\frac{b}{a} \text { for any constant } C
$$

Example 6. Solve the differential equation

$$
y^{\prime}+3 y=5
$$

Here, $a=3$ and $b=5$ and the formula above implies

$$
y(x)=C e^{-3 x}+\frac{3}{5}
$$

for any constant C.
3.2. Case 2: a is constant, b is a function. In this case, equation 2 becomes

$$
y^{\prime}+a y=b(x)
$$

The method of multiplying both sides with the integrating factor $e^{a x}$ works in this case, too:

$$
\begin{equation*}
y^{\prime} e^{a x}+a y^{a x}=b(x) e^{a x} \tag{4}
\end{equation*}
$$

The left hand side is the derivative of the product $y e^{a x}$, and equation 4 is therefore equivalent to

$$
\frac{d}{d x}\left(y e^{a x}\right)=b(x) e^{a x}
$$

Integration gives

$$
y e^{a x}=\int b(x) e^{a x} d x+C
$$

and we can isolate y :

$$
y=y(x)=C e^{-a x}+e^{-a x} \int b(x) e^{a x} d x
$$

When calculating the integral, you do not need to include an integration constant, as this is already included in C. To summarize:

$$
y^{\prime}+a y=b(x) \Leftrightarrow y=y(x)=C e^{-a x}+e^{-a x} \int e^{a x} b(x) d x
$$

Example 7. Solve the differential equation $y^{\prime}+2 y=x$. In this case, $a=2$ and $b=b(x)=x$. The formula implies

$$
\begin{equation*}
y=y(x)=C e^{-2 x}+e^{-2 x} \int e^{2 x} x d x \tag{5}
\end{equation*}
$$

We calculate the integral using the technique of integration by parts: Let $u=x$ and $v^{\prime}=e^{2 x}$. Then $u^{\prime}=1$ and $v=\frac{1}{2} e^{2 x}$. Integration by parts gives

$$
\int \underbrace{e^{2 x}}_{v^{\prime}} \underbrace{x}_{u} d x=\underbrace{\frac{1}{2} x e^{2 x}}_{u \cdot v}-\int \underbrace{\frac{1}{2} e^{2 x}}_{v} \cdot \underbrace{1}_{u^{\prime}} d x
$$

that is

$$
\int e^{2 x} x d x=\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}
$$

Inserting this into equation 5 gives

$$
\begin{aligned}
y=y(x) & =C e^{-2 x}+e^{-2 x}\left(\frac{1}{2} x e^{2 x}-\frac{1}{4} e^{2 x}\right) \\
& =C e^{-2 x}+\frac{1}{2} x-\frac{1}{4}
\end{aligned}
$$

3.3. Case 3: Both a and b are functions. We will not include the explanation for the solution in this case. We just choose to believe the following:

$$
y^{\prime}+a(x) y=b(x) \Leftrightarrow y=y(x)=e^{-\int a(x) d x}\left(C+\int e^{\int a(x) d x} b(x) d x\right)
$$

Example 8. Solve the differential equation $y^{\prime}-\frac{1}{x} y=x$ where $x>0$. Now $a(x)=-\frac{1}{x}$ and $b(x)=x$. Thus

$$
\int a(x) d x=\int-\frac{1}{x} d x=-\ln (x)
$$

Since $e^{-\ln (x)}=\frac{1}{x}$, and $e^{\ln (x)}=x$, the formula implies

$$
\begin{aligned}
y=y(x) & =x\left(C+\int \frac{1}{x} \cdot x d x\right) \\
& =x(C+x) \\
& =C x+x^{2}
\end{aligned}
$$

4. SECOND ORDER LINEAR DIFFERENTIAL EQUATIONS

A second order linear differential equation is of the form

$$
\begin{equation*}
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d(x) \tag{6}
\end{equation*}
$$

where a, b, c and d are continuous functions of x. We will only give a method for solving such equations in the case when a, b, c and d are constants. In the case when $d=0$, we are facing a homogeneous second order linear differential equation with constant coefficients:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

We will not explain, but simply believe the following method for solving such differential equations:

Method for solving homogeneous second order linear differential equations with constant coefficients:

Step 1 You start with an equation of the type

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Step 2 Write down the characteristic equation

$$
a r^{2}+b r+c=0
$$

and solve for r.
Step 3 There are three cases:
(1) If $b^{2}-4 a c>0$, the characteristic equation has two different solutions r_{1} and r_{2}. Then

$$
y(x)=A e^{r_{1} x}+B e^{r_{2} x}
$$

for constants A and B.
(2) If $b^{2}-4 a c=0$, the characteristic equation as one solution r. Then

$$
y(x)=(A+B x) e^{r x}
$$

for constants A and B.
(3) If $a^{2}-4 a c<0$, a solution exists, but it is not part of this course.

What if $d(x)$ in equation 6 is a nonzero constant? In this case, the differential equation looks like this:

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=d \tag{7}
\end{equation*}
$$

Observe that the constant function $\bar{y}(x)=\frac{d}{c}$ is a solution:

$$
\bar{y}^{\prime \prime}=0 \quad \text { and } \quad \bar{y}^{\prime}=0
$$

and therefore

$$
a \bar{y}^{\prime \prime}+b \bar{y}^{\prime}+c \bar{y}=0+0+c \bar{y}=d
$$

Thus $\bar{y}(x)=\frac{d}{c}$ fits into the equation, and is therefore a solution. To find the general solution to the differential equation in 7, follow the following procedure:

Method for solving nonhomogeneous second order linear differential equations with constant coefficients:

Step 1 You start with an equation of the type

$$
a y^{\prime \prime}+b y^{\prime}+c y=d
$$

Step 2 Solve the corresponding homogeneous equation using the method above. Call this solution $y_{h}(x)$.
Step 3 You know that the constant function $\bar{y}(x)=\frac{d}{c}$ is a solution Step 4 The general solution is

$$
y(x)=y_{h}(x)+\bar{y}(x)
$$

5. A note on notation

If the variable is time t, we often denote the function by x instead of y. Furthermore, if $x(t)$ is a twice differentiable function of t, we denote the first derivative of x with respect to t by \dot{x}, the second derivative with respect to t by \ddot{x} and so on. Thus when $x(t)$ is the function and t is the variable,

$$
\dot{x}=\frac{d x}{d t} \quad \text { and } \quad \ddot{x}=\frac{d^{2} x}{d t^{2}}
$$

and the differential equation

$$
a \ddot{x}+b \dot{x}+c x=0
$$

is the same differential equation as

$$
a x^{\prime \prime}+b x^{\prime}+c x=0
$$

6. Want to know more?

If you want to know more about differential equations, you can read chapters 1, 2 and 3 in Matematisk Analyse, bind 2 (Sydsæter, Seierstad, Strøm).

