
FK1003 Lecture 2 1. MATRICES AND MATRIX OPERATIONS

FORK1003
Preparatory Course in Linear Algebra 2016/17

Lecture 2: Matrices

August 2, 2016

1 Matrices and Matrix Operations

1.1 Matrix Defined

Definition 1.1 (Matrix). An m×n matrix is an array of m ·n numbers arranged in m rows
and n columns.

m × n matrix:

(m rows)

(n columns)
a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


The number a14 for example refers to the entry in 1st row, 4th column.

Notation. For brevity, when we have a m× n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn


we abbreviate it by writing A = (aij). Similarly, if

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
. . .

...
bm1 bm2 . . . bmn


we write B = (bij).
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1.2 Addition and Scalar Multiplication

We can define many operations on matrices. The simplest ones are addition and scalar
multiplication.

Definition 1.2 (Matrix Addition & Subtraction). Let A = (aij) and B = (bij) be two
matrices of the same dimension m× n. Then A + B is the m× n matrix

A + B = (aij + bij) =


a11 + b11 a12 + b12 . . . a1n + b1n
a21 + b21 a22 + b22 . . . a2n + b2n

...
...

. . .
...

am1 + bm1 am2 + bm2 . . . amn + bmn


Similarly, we can define matrix subtraction:

A−B = (aij − bij) =


a11 − b11 a12 − b12 . . . a1n − b1n
a21 − b21 a22 − b22 . . . a2n − b2n

...
...

. . .
...

am1 − bm1 am2 − bm2 . . . amn − bmn


Note that the dimensions need to match. If A and B had a different number of
columns or rows, adding them together would not make sense.

Example 1.3. Let

A =

[
3 −2 9
1 2 −4

]
and B =

[
−2 7 −4
3 1 2

]
.

Then,

A + B =

[
3− 2 −2 + 7 9− 4
1 + 3 2 + 1 −4 + 2

]
=

[
1 5 5
4 3 −2

]
.

However, [
3 −2 9
1 2 −4

]
+

[
1 5
4 3

]
is not defined.

Definition 1.4 (Scalar Multiplication). Let A = (aij) be a m× n matrix, and c a constant.
Then cA is the m× n matrix

cA = (c · aij) =


ca11 ca12 . . . ca1n
ca21 ca22 . . . ca2n

...
...

. . .
...

cam1 cam2 . . . camn


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Example 1.5. Let c = −2 and

A =

[
3 −2 1
7 0 −1

]
.

Then

cA =

[
−6 4 −2
−14 0 2

]
.

1.3 Matrix Multiplication

Matrix multiplication is slightly more complicated, but it is the most important and ”natu-
ral” operation on matrices. The idea of multiplication A ·B is that we multiply the rows
of A with the columns of B. Let us first define what we mean by multiplying a row
with a column.

Definition 1.6 (Vector dot product). Suppose you have a row
(
a1 a2 . . . ap

)
and a

column 
b1
b2
...
bp

 .

Then, the vector dot product or ’multiplication of the row and the column’ is the sum

(
a1 a2 . . . ap

)
b1
b2
...
bp

 = a1b1 + a2b2 + . . . + apbp

=

p∑
k=1

akbk.

So when we multiply a row and a column, we multiply each of the entries in pairs, and add
it all together.

Example 1.7. If we have the row vector
(

3 −2 4
)

and the column vector 6
−1
−3

 ,

we have the dot product

(
3 −2 4

) 6
−1
−3

 = 3 · 6 + (−2) · (−1) + 4 · (−3)

= 8.
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Definition 1.8 (Matrix multiplication). Let A = (aij) be a m × p matrix and B = (bij) a
p× n matrix. Then AB is the m× n matrix whose (i, j)-th entry1 is the dot product of the
ith row of A and the jth column of B.

AB = (cij) =

 p∑
k=1

aikbkj

 .

Example 1.9. For example, if

A =

[
2 1
−1 3

]
and B =

[
1 −1
4 7

]
,

then (denoting 1st row of A as R1A and 1st column of B as C1B)

AB =

R1A · C1B R1A · C2B

R2A · C1B R2A · C2B



=



[
2 1

][1
4

] [
2 1

][−1
7

]

[
−1 3

][1
4

] [
−1 3

][−1
7

]


=

[
2 + 4 −2 + 7
−1 + 12 1 + 21

]

=

[
6 5
11 22

]

Remark 1.10. I find that the easiest way to carry out matrix multiplications is to use your
index fingers (pekefingere): When you calculate the (i, j)th entry of AB, you place your left
index finger to the left on the ith row of A, and your right index finger at the top of the jth
column of B. Then you move your left finger to the right and your right finger downwards,
multiplying and adding each pair of entries along the row and column.

The multiplication AB is defined if and only if the number of columns in A
matches the number of rows in B.

1(i, j)th entry means entry in ith row and jth column
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Example 1.11. If

A =

 3 2 −1
4 0 2
−3 2 −2

 and B =

0 1 −2
1 3 −1
5 0 7

 ,

then

AB =

 3 · 0 + 2 · 1− 1 · 5 3 · 1 + 2 · 3− 1 · 0 3 · (−2) + 2 · (−1)− 1 · 7
4 · 0 + 0 · 1 + 2 · 5 4 · 1 + 0 · 3 + 2 · 0 4 · (−2) + 0 · (−1) + 2 · 7
−3 · 0 + 2 · 1− 2 · 5 −3 · 1 + 2 · 3− 2 · 0 −3 · (−2) + 2 · (−1)− 2 · 7


=

−3 9 −15
10 4 6
−8 3 −10

 .

Example 1.12. If

A =

[
1
2

]
and B =

[
3 −2
1 0

]
,

then AB is not defined. BA is defined however, and we have

BA =

[
3 −2
1 0

][
1
2

]
=

[
3 · 1− 2 · 2
1 · 1 + 0 · 2

]
=

[
−1
1

]
.

1.4 Identity and Zero Matrix

Definition 1.13 (Identity Matrix). The n× n identity matrix In is defined as

In =


1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

 .

In is called the identity matrix, because it is the multiplicative identity:

Proposition 1.14. Let A be an m× n matrix. Then

AIn = ImA = A.

Definition 1.15 (Zero matrix). The m× n zero matrix 0mn is defined as

0mn =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .
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The following result is obvious:

Proposition 1.16. For all m× n matrixes A,

A + 0mn = 0mn + A = A,

and
A0np = 0pmA = 0.

1.5 Transpose

A matrix operation that is important to mention is the transpose. Given a m×n matrix A,
its transpose AT is the n×m matrix you get by reflecting the matrix across its diagonal:

Definition 1.17 (Transpose). Given a matrix A = (aij), its transpose AT = (atij) = (aji) is
the matrix you get when flipping the rows of A into columns, and columns of A into rows.
If we have

A =


a11 a12 a13 . . . a1n
a21 a22 a23 . . . a2n
...

...
...

. . .
...

am1 am2 am3 . . . amn

 ,

then

AT =


a1 a21 . . . am1

a12 a22 . . . am2

a13 a23 . . . am3
...

...
. . .

...
a1n a2n . . . amn

 .

Example 1.18.

A =

[
2 3 −1 6
4 −1 2 10

]
AT =


2 4
3 −1
−1 2
6 10



B =


2
−1
3
4

 BT =
[
2 −1 3 4

]
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Properties of the Transpose

Double transpose (AT )T = A

Additive distributivity (A + B)T = AT + BT

Scalar multiplication (cA)T = cAT

Multiplication (AB)T = BTAT

1.6 Properties of Matrix Operations

Multiplication is not commutative AB 6= BA

Multiplication is associative (AB)C = A(BC)

Left-distributive law A(B + C) = AB + AC

Right-distributive law (A + B)C = AC + BC

Scalar c(AB) = (cA)B = A(cB)

1.7 Square Matrices

Definition 1.19 (Square matrix). A square matrix is any matrix with the same number of
rows as columns, so a n× n matrix.

When a matrix is square, we can multiply it by itself. Thus, we can define powers of
square matrices:

Definition 1.20 (Power). Let A be a n× n matrix. We define An to be the product

An := A · A · . . . · A︸ ︷︷ ︸
n times

.
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Example 1.21. For all k = 1, 2, 3, . . .,

(In)k = In.

Example 1.22.

A2 =

[
2 −1
3 −2

]2
=

[
2 −1
3 −2

][
2 −1
3 −2

]
=

[
2 · 2− 1 · 3 2 · (−1)− 1 · (−2)
3 · 2− 2 · 3 3 · (−1)− 2 · (−2)

]
=

[
1 0
0 1

]

Since A2 is the identity matrix, we know that[
2 −1
3 −2

]4
=

[2 −1
3 −2

]22

=

[
1 0
0 1

]2
=

[
1 0
0 1

]
.

By extension, A2k = (A2)k = (I2)
k = I2 for all k = 1, 2, 3, . . ..

Diagonal matrices are also worth knowing:

Definition 1.23 (Diagonal matrix). A diagonal matrix is a square matrix where the only
non-zero entries are along the diagonal:

d1 0 0 . . . 0
0 d2 0 . . . 0
0 0 d3 . . . 0
...

...
...

. . .
...

0 0 0 . . . dn

 .

Example 1.24. All identity matrices are diagonal matrices. Any square zero matrix is also
a diagonal matrix. The following is a 3× 3 diagonal matrix:1 0 0

0 4 0
0 0 −2


2 Inverse Matrices

Inverse matrices is one of the most important concepts of Linear Algebra.

Definition 2.1 (Inverse matrix). A square matrix A is invertible if there exists a matrix
A−1 such that

AA−1 = A−1A = In.

We then call A−1 the inverse of A.

Proposition 2.2. A non-square matrix is never invertible.
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Example 2.3. We saw earlier that

A =

[
2 −1
3 −2

]

satisfies
A2 = I2.

Therefore, A is invertible, and it is its own inverse:

A−1 := A.

Example 2.4. Not all square matrices are invertible. The matrix

A =

[
1 3
1 3

]

is not invertible for example. This is because the 1st and 2nd row are the same, so when you
multiply A with any matrix B, the product AB will also have equal rows, and so cannot be

of the form

[
1 0
0 1

]
.

2.1 Briefly on Determinants

How do you determine if a matrix is invertible or not?

Theorem 2.5. A square matrix is invertible, if and only if its determinant is nonzero.

Determinants is the topic of the next lecture. For now we’ll only give the determinant of
a 2× 2 matrix:

Definition 2.6 (Determinant). The determinant of a 2× 2 matrix

A =

[
a11 a12
a21 a22

]

is the value
det(A) := a11a22 − a12a21.

So a quick way of checking if a 2×2 matrix is invertible is to check whether that expression
is zero or nonzero.
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2.2 Finding the Inverse

A reliable way of calculating the inverse of a matrix is to use row reduction and elementary
row operations (see Lecture 1). As you might recall, we have three elementary row operations:

1. Scalar multiplication: Multiplying a row by a nonzero constant: (R1→ cR1).

2. Row addition: Adding a multiple of a row to another row: (R2→ R2 + 5R1).

3. Interchanging: Swapping two rows: (R2↔ R3).

By the following process, we can find the inverse of matrix A through row re-
duction:

1. Write A on the left side, and the identity matrix In on the right side.

2. For each elementary row operations you apply on A, you apply the same operation on
the right matrix.

3. Once you have row reduced A to the identity matrix In, the right matrix is its inverse
A−1.

4. If A cannot be row reduced to In, it means that it’s not invertible.

Proposition 2.7. A square matrix is invertible, if and only if it is row equivalent to the
identity matrix.
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Example 2.8. Find the inverse to the matrix

A =

1 1 1
1 2 4
1 3 9

 .

We write 1 1 1
1 2 4
1 3 9


1 0 0

0 1 0
0 0 1


1 1 1

0 1 3
0 2 8


 1 0 0
−1 1 0
−1 0 1

 R2→ R2−R1
R3→ R3−R11 0 −2

0 1 3
0 0 2


 2 −1 0
−1 1 0
1 −2 1

 R1→ R1−R2
R3→ R3− 2R2

1 0 −2
0 1 3
0 0 1




2 −1 0
−1 1 0
1

2
−1

1

2

 R3→ 1

2
R3

1 0 0
0 1 0
0 0 1




3 −3 1

−5

2
4 −3

2
1

2
−1

1

2

R1→ R1 + 2R3
R2→ R2− 3R3

Now A has been row reduced to I3, which means that

A−1 =


3 −3 1

−5

2
4 −3

2
1

2
−1

1

2


is the inverse of A.

Fact:

1. If the reduced echelon form of A is In, A is invertible.

2. If the reduced echelon form of A is not In, A is not invertible.
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3 Linear Systems as Matrix Equations

This section is dedicated to the fact that a linear system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm,

can be written as a matrix equation
Ax = b.

3.1 Vector

Definition 3.1 (Row vector). A row vector is a matrix of dimension 1×m:

v =
[
v1 v2 . . . vm

]
.

Definition 3.2 (Column vector). A column vector is a matrix of dimension n× 1:

v =


v1
v2
...
vn

 .

Matrix-vector multiplication
You can multiply matrices and vectors the same way you do matrix multiplication: Let
A = (aij) be a m× n matrix and let

x =


x1

x2
...
xn


be an n-dimensional column vector. Then

Ax =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn



x1

x2
...
xn



=


a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn
...

am1x1 + am2x2 + . . . + amnxn

 .
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So Ax is a m-dimensional column vector, where each entry represents a linear expression

ai1x1 + ai2x2 + . . . ainxn.

Furthermore, we can write matrix equations: Let

b =


b1
b2
...
bm


be a m-dimensional column vector. Then

Ax = b

represents the matrix equation
a11x1 + a12x2 + . . . + a1nxn

a21x1 + a22x2 + . . . + a2nxn
...

am1x1 + am2x2 + . . . + amnxn

 =


b1
b2
...
bm

 .

This equation corresponds exactly to the linear system:

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm

Theorem 3.3. The linear system

a11x1 + a12x2 + . . . + a1nxn = b1

a21x1 + a22x2 + . . . + a2nxn = b2
...

am1x1 + am2x2 + . . . + amnxn = bm

is equivalent to the matrix equation
Ax = b

where

� A is the coefficient matrix of the linear system.

� x is the column vector of the n variables x1, x2, . . . , xn.

� b is the column vector of the m constant terms b1, b2, . . . , bm.
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Example 3.4. The linear system
x1 − 3x2 + 2x3 − x4 = 4

−x1 + 3x3 + 2x4 = −1

4x1 + 2x2 − 5x4 = 2

is the same as the matrix equation

 1 −3 2 −1
−1 0 3 2
4 2 0 −5



x1

x2

x3

x4

 =

 4
−1
2

 .

3.2 Solving Linear Systems Through Matrix Equations

Consider a n× n linear system written as a matrix equation:

Ax = b.

Suppose A is invertible with inverse matrix A−1. Then properties of matrix multiplication
tells us that

A−1(Ax) = A−1b

(A−1A)x = A−1b

Inx = A−1b

x = A−1b.

So we have a solution for the above matrix equation: Setting x equal to A−1b solves the
equation

Ax = b.

But this also means that 
x1

x2
...
xn

 = A−1b

is a solution for x1, x2, . . . , xn for the corresponding linear system. We summarize this in the
following result:

Theorem 3.5. A (n × n)-linear system has a unique solution if and only if its coefficient
matrix A is invertible. If so, the unique solution is given by

x = A−1b.

©Erlend Skaldehaug Riis 2016 14



FK1003 Lecture 2 3.2 Solving Linear Systems Through Matrix Equations

Example 3.6. Solve the following linear system by inverting its coefficient matrix:
6x1 + 2x2 + 6x3 = 20

2x1 + x2 = 4

−4x1 − 3x2 + 9x3 = 3.

We can rewrite this as the matrix equation 6 2 6
2 1 0
−4 −3 9


x1

x2

x3

 =

20
4
3


where

A =

 6 2 6
2 1 0
−4 −3 9


is the coefficient matrix. We find its inverse by row reducing A: 6 2 6

2 1 0
−4 −3 9


1 0 0

0 1 0
0 0 1


 1 1/3 1

2 1 0
−4 −3 9




1

6
0 0

0 1 0
0 0 1

 R1→ 1

6
R1

1 1/3 1
0 1/3 −2
0 −5/3 13


 1/6 0 0
−1/3 1 0
2/3 0 1

 R2→ R2− 2R1
R3→ R3 + 4R11 1/3 1

0 1 −6
0 −5/3 13


1/6 0 0
−1 3 0
2/3 0 1

 R2→ 3R2

1 0 3
0 1 −6
0 0 3


1/2 −1 0
−1 3 0
−1 5 1

 R1→ R1− 1

3
R2

R3→ R3 +
5

3
R21 0 3

0 1 −6
0 0 1


 1/2 −1 0
−1 3 0
−1/3 5/3 1/3

R3→ 1
3
R3

1 0 0
0 1 0
0 0 1


 3/2 −6 −1
−3 13 2
−1/3 5/3 1/3

R1→ R1− 3R3
R2→ R2 + 6R3
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So A is invertible and

A−1 =

 3/2 −6 −1
−3 13 2
−1/3 5/3 1/3

 .

Therefore

x = A−1b

=

 3/2 −6 −1
−3 13 2
−1/3 5/3 1/3


20

4
3


=

 3
−2
1

 .

So the solution to the linear system
6x1 + 2x2 + 6x3 = 20

2x1 + x2 = 4

−4x1 − 3x2 + 9x3 = 3.

is [
x1 x2 x3

]
=
[
3 −2 1

]
.

Furthermore, for any other vector of constants, b, the linear system Ax = b has a unique
solution x = A−1b.

4 Linear Systems as Linear Combinations of Columns

In the last section of this lecture, we take a look at how we can express a linear system

a11x1 + a12x2 + . . . + a1n = b1

a21x1 + a22x2 + . . . + a2n = b2
...

am1x1 + am2x2 + . . . + amn = bm,

as a linear combination of columns

x1a1 + x2a2 + . . . + xnan = b.
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4.1 Matrix Columns

For the matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,

we denote its columns by

a1 =


a11
a21
...

am1

 , a2 =


a12
a22
...

am2

 , . . . an =


a1n
a2n
...

amn

 ,

and we can write the matrix as a row of columns :

A =
[
a1 a2 . . . an

]
Similarly, the linear system/matrix equation

Ax = b

can equivalently be expressed as a linear combination of the columns of A:[
a1 a2 . . . an

]
x = b

x1a1 + x2a2 + . . . + xnan = b.

Example 4.1. The linear system
7x1 + 2x2 + x3 = 1

3x2 − x3 = −2

−3x1 + 4x2 − 2x3 = −1

can be written as the matrix equation 7 2 1
0 3 −1
−3 4 −2


x1

x2

x3

 =

 1
−2
−1


or the linear combination of columns

x1

 7
0
−3

+ x2

2
3
4

+ x3

 1
−1
−2

 =

 1
−2
−1

 .
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4.2 Linear Combinations

Definition 4.2 (Linear Combination). Let a1, a2, . . . , an be a collection of vectors. We say
that a vector v is a linear combination of a1, a2, . . . , an if you can write

v = c1a1 + c2a2 + . . . + cnan

for some constants c1, c2, . . . , cn.

Example 4.3.

[
2
1

]
is a linear combination of

[
1
0

]
and

[
0
1

]
since

[
2
1

]
= 2

[
1
0

]
+ 1

[
0
1

]

However,

[
2
1

]
is not a combination of

[
1
0

]
and

[
3
0

]
since there are no numbers c1 and c2

such that [
2
1

]
= c1

[
1
0

]
+ c2

[
3
0

]
=

[
c1 + 3c2

0

]

4.3 Spanning

Definition 4.4 (Spanning Set). For a list of vectors a1, a2, . . . , an, the spanning set

Span {a1, a2, . . . , an}

is the set of all possible linear combinations of a1, a2, . . . , an.

So the spanning set is the set of all vectors that can be written as a linear combination
of a1, a2, . . . , an.

Example 4.5.

Span


[

1
0

]
,

[
3
0

] =


[
c
0

]
| where c is any number


Definition 4.6 (Spanning Rn). We say that a list of vectors a1, a2, . . . , am spans Rn if every
n-dimensional vector v belongs to the spanning set

Span {a1, a2, . . . , am} .

Remark 4.7. Rn is called the n-dimensional Euclidean space and is the set of all real-valued
n-dimensional vectors.

Example 4.8. The vectors

[
1
0

]
and

[
0
1

]
span R2, since for any 2-dimensional vector

[
c1
c2

]
,

we can write [
c1
c2

]
= c1

[
1
0

]
+ c2

[
0
1

]
.
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4.4 Solving Linear Systems

The following result is the reason we are interested in matrix columns, linear combinations
and spanning sets:

Theorem 4.9. Consider a linear system/matrix equation Ax = b, and let a1, a2, . . . , an be
the columns of the coefficient matrix A. Then, if a1, a2, . . . , an span Rm, the linear system
has a unique solution for every m-dimensional vector b.

Why? Solving the linear system Ax = b is equivalent to solving the vector equation

x1a1 + x2a2 + . . . + xnan = b.

But if a1, a2, . . . , an span Rm, then by definition there exists c1, c2, . . . , cn so that

c1a1 + c2a2 + . . . + cnan = b.

So we have a solution to the linear system, (x1, x2, . . . , xn) = (c1, c2, . . . , cn).

Definition 4.10 (Standard unit vector). An m-dimensional standard unit vector is a vector
with 1 in one position and 0 in all the other positions:


1
0
0
0




0
0
1
0
0


0

0
1



There are m different m-dimensional standard unit vectors. The following result is also
helpful:

Proposition 4.11. a1, a2, . . . , an span Rm if and only if every m-dimensional standard unit
vector is a linear combination of a1, a2, . . . , an.

So if we want to show that

a1 =

a11a21
a31

 a2 =

a12a22
a32

 a3 =

a13a23
a33


span Rm, then all we need to show is that the unit vectors1

0
0


0

1
0


0

0
1


belong to the spanning set.
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Example 4.12. Show that the linear system
2x1 + x2 + 2x3 = b1

x1 + 2x2 − x3 = b2

x1 + x3 = b3

has a solution for every b =

b1b2
b3

.

We have the coefficient matrix

A =

2 1 2
1 2 −1
1 0 1


and the three column vectors

a1 =

2
1
1

 , a2 =

1
2
0

 , a3 =

 2
−1
1

 .

We want to show that the three standard unit vectors are linear combinations of our column
vectors.

1. We see that

a1 − a3 =

0
2
0


so 0

1
0

 =
1

2
a1 −

1

2
a3.

2. Next, we see that

a2 −

0
2
0

 =

1
0
0


so 1

0
0

 = a2 − 2

0
1
0

 = a2 − 2

(
1

2
a1 −

1

2
a3

)
= −a1 + a2 + a3.
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3. Lastly, we see that0
0
1

 = a1 − 2

1
0
0

−
0

1
0

 = a1 − 2 (−a1 + a2 + a3)−
(

1

2
a1 −

1

2
a3

)

=
5

2
a1 − 2a2 −

3

2
a3.

4. Since every standard unit vector is a linear combination of the column vectors, we
conclude that the linear system has a unique solution for every possible vector b.

4.5 Summary of Results

We can summarize the main results of the first two lectures accordingly:

Theorem 4.13. Let A be a m× n matrix. The following statements are equivalent:

1. Every linear system with A as its coefficient matrix has a unique solution.

2. A has a pivot position in every row.

3. A is invertible.

4. For each b in Rm, the equation Ax = b has a unique solution.

5. The columns of A span Rm.
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