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Preparatory Course in Linear Algebra 2016/17
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1 Introduction to Determinants

1.1 Understanding the Determinant

Every square (n × n) matrix has a determinant, which is a number. For a matrix A, we
denote its determinant by det(A) and/or |A|:

(matrix) A −→ det(A) (number).

It is difficult to explain what the determinant actually represents ; it is easier to use it than
it is to understand it. One explanation of the determinant is the following:

An n× n matrix is a transformation of n-dimensional geometric shapes.
For example, applying a matrix to an n-dimensional square, will transform

it to an n-dimensional paralellogram:

The area of the transformed parallelogram is equal to the area
of the square times the determinant.

The determinant gives us very useful information about the matrix. Perhaps the most useful
piece of information it provides is the following:

Theorem 1.1. A square matrix A is invertible if and only if

det(A) 6= 0.
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1.2 Defining the Determinant

In the last lecture we gave the formula for the determinant of a 2× 2 matrix:

If A =

[
a11 a12
a21 a22

]
, then det(A) = a11a22 − a12a21.

The general definition of a determinant is quite complicated and mathematical, and you
don’t need to understand it or know it. But for those who are curiuos, this is how you define
the determinant of a general n× n matrix:

Definition 1.2 (Non-compulsory). Let A = (aij) be a n× n matrix. Then its determinant
det(A) is given by

det(A) :=
∑
σ∈Sn

sign (σ)

 n∏
i=1

aiσ(i)


Another obstacle in dealing with determinants is that they become very difficult to cal-

culate when your matrix is 4× 4 or bigger:

� When your matrix is 2 × 2, you only need to add two terms (a11a22 and −a12a21) to
get the determinant.

� For a 3× 3 matrix, you add together six terms.

� For a 4× 4 matrix, you add together 24 terms.

� ...For a n× n matrix, you add together n! = 1 · 2 · 3 · . . . · (n− 1) · n terms!

So we stick to knowing how to calculate the determinant for 2 × 2 and 3 × 3 matrices,
and for larger matrices, we will use other tools and tricks to find the determinant.
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2 Clever Trick for 3× 3 Determinants

Before we delve into the theory of determinants, we will show two neat tricks for calculating
2× 2 and 3× 3 determinants:

Suppose you have the 3× 3 matrix

A =

 1 0 2
4 3 7
−2 5 0


1. Write out the matrix again, but add column 1 and 2 to the right of the matrix:

1 0 2 1 0
4 3 7 4 3
−2 5 0 −2 5

2. Draw 6 diagonal arrows: 3 going to the left and 3 going to the right:

3. For each diagonal line, multiply together the three numbers it crosses. Then you get
the determinant of A by adding all the products of the green lines, and subtracting all
the products of the red lines:

1 · 3 · 0 = 0, 0 · 7 · (−2) = 0, 2 · 4 · 5 = 40

2 · 3 · (−2) = −12, 1 · 7 · 5 = 35, 0 · 4 · 0 = 0

so

det(A) = 0 + 0 + 40− (−12)− 35− 0

= 40 + 12− 35

= 17.

Warning: This method does not work for matrices larger than 3 × 3.

3 Cofactor Expansion

Cofactor expansion is the first method we will use to calculate determinants. The idea of
cofactor expansion is that we can express the determinant of a large matrix as the sum of
the determinants of many smaller matrices. For example, if we want to find the determinant
of a 5× 5 matrix, instead of calculating the determinant directly, we can separate the 5× 5
matrix into five 4 × 4 matrices, calculate the determinant of these matrices, and add them
together to get the determinant of the 5× 5 matrix.
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3.1 Minors and Cofactors

If you have a square matrix A, you can obtain a smaller square matrix by removing a row
and a column from matrix A.

Example 3.1. Consider the 3× 3 matrix

A =

3 0 1
2 −7 5
1 −1 6


and denote by Aij the 2× 2 matrix you get by removing the ith row and the jth column of
matrix A. So for A13 you remove the 1st row and the 3rd column:

A13 =

[
2 −7
1 −1

]
.

Similarly, you have

A22 =

[
3 1
1 6

]
, A32 =

[
3 1
2 5

]
, A11 =

[
−7 5
−1 6

]
.

We use the same notation for a general n× n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

 ,
A25 is for example the (n − 1) × (n − 1) matrix you get by removing the 2nd row and 5th
column from A.

These submatrices have determinants, and we call them minors :

Definition 3.2 (Minor). Consider a n × n matrix A = (aij). The minor Mij is the deter-
minant of the (n− 1)× (n− 1) matrix Aij,

Mij = det(Aij).

And cofactors are the same as minors, just that you multiply the determinant by a factor
of (−1)i+j:

Definition 3.3 (Cofactor). Consider a n×n matrix A = (aij). The cofactor Cij is given by

Cij = (−1)i+jMij.
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Remark 3.4. Note that

(−1)k =

{
1 if k is even

−1 if k is odd

So Cij = Mij whenever the row (i) and column (j) add up to an even number i + j, and
Cij = −Mij whenever i + j is odd. You can also determine the sign of Cij from the (i, j)
position in this ”sign matrix”:

Example 3.5. Consider again the matrix

A =

3 0 1
2 −7 5
1 −1 6

 .
We have

A11 =

[
−7 5
−1 6

]
,

M11 = det(A11) = −7 · 6− 5 · (−1) = −42 + 5 = −37,

C11 = (−1)1+1M11 = M11 = −37.

Similarly, we have

A32 =

[
3 1
2 5

]
,

M32 = det(A32) = 3 · 5− 1 · 2 = 13,

C32 = (−1)3+2M32 = −M32 = −13.
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3.2 Cofactor Expansion

Suppose you have a n× n matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 .
Then the determinant det(A) can be found by calculating all the cofactors along a row or a
column:

Theorem 3.6 (Cofactor expansion along a row). Pick a row k. Then

det(A) = ak1Ck1 + ak2Ck2 + . . . aknCkn =
n∑
j=1

akjCkj.

Theorem 3.7 (Cofactor expansion along a column). Pick a column k. Then

det(A) = a1kC1k + a2kC2k + . . . ankCnk =
n∑
j=1

ajkCjk.

Remark 3.8. The most common way is to do row expansion along the 1st row, unless there
is another more obvious option.

Example 3.9. Consider the 3× 3 matrix

A =

 1 2 0
−3 1 4
2 −1 3


We calculate the determinant by cofactor expanding the 1st row:

det(A) =

∣∣∣∣∣∣∣
1 2 0
−3 1 4
2 −1 3

∣∣∣∣∣∣∣
= 1 ·

∣∣∣∣∣ 1 4
−1 3

∣∣∣∣∣− 2 ·

∣∣∣∣∣−3 4
2 3

∣∣∣∣∣+ 0 ·

∣∣∣∣∣−3 1
2 −1

∣∣∣∣∣
=

∣∣∣∣∣ 1 4
−1 3

∣∣∣∣∣− 2

∣∣∣∣∣−3 4
2 3

∣∣∣∣∣
=
(
1 · 3− (−1) · 4

)
− 2 (−3 · 3− 2 · 4)

= 41.
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Example 3.10. We want to calculate the determinant of

A =

1 2 −3
3 0 1
2 0 −1


The 2nd column has two zeros, so two of the terms in the expansion will disappear. So for
this matrix, it is better to expand along column 2:∣∣∣∣∣∣∣

1 2 −3
3 0 1
2 0 −1

∣∣∣∣∣∣∣ = −2

∣∣∣∣∣3 1
2 −1

∣∣∣∣∣+ 0

∣∣∣∣∣1 −3
2 −1

∣∣∣∣∣− 0

∣∣∣∣∣1 −3
3 1

∣∣∣∣∣
= −2

∣∣∣∣∣3 1
2 −1

∣∣∣∣∣
= −2(−3− 2)

= 10.

Example 3.11. Lastly, let’s calculate the determinant of the following 4× 4 matrix:

A =


1 6 −3 13
0 2 −3 8
0 0 3 −2
0 0 2 −1


The first column has 3 zeros so let’s expand along that:∣∣∣∣∣∣∣∣∣

1 6 −3 13
0 2 −3 8
0 0 3 −2
0 0 2 −1

∣∣∣∣∣∣∣∣∣ = 1 ·

∣∣∣∣∣∣∣
2 −3 8
0 3 −2
0 2 −1

∣∣∣∣∣∣∣− 0 + 0− 0

=

∣∣∣∣∣∣∣
2 −3 8
0 3 −2
0 2 −1

∣∣∣∣∣∣∣ .
This 3× 3 determinant has 2 zeros in the first column, so we can expand again:∣∣∣∣∣∣∣

2 −3 8
0 3 −2
0 2 −1

∣∣∣∣∣∣∣ = 2 ·

∣∣∣∣∣3 −2
2 −1

∣∣∣∣∣
= 2(−3 + 4) = 2.

So det(A) = 2.
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4 Determinants by Row Reduction

In this section, we will look at how we can simplify the determinant calculations by row
reducing the matrix. Once again, we are using elementary row operations. The first thing
we need to cover is how applying elementary row operations affect the determinant.

4.1 Determinants and Elementary Row Operations

We have three elementary row operations:

1. Scalar multiplication: Multiplying a row by a nonzero constant: (R1→ cR1).

2. Row addition: Adding a multiple of a row to another row: (R2→ R2 + 5R1).

3. Interchanging: Swapping two rows: (R2↔ R3).

Theorem 4.1. Suppose A is an n× n matrix with determinant |A|.

1. When multiplying a row by a scalar c, multiply the determinant by the same scalar c:

If B is the matrix we get from A by replacing R1 by cR1, then

|B| = c|A|.

2. When adding a multiple of another row to a row, the determinant stays the same:

If B is the matrix we get from A by replacing R2 by R2 + cR3, then

|B| = |A|.

3. When swapping two rows, multiply the determinant by (−1):

If B is the matrix we get from A by interchanging R1 and R3, then

|B| = −|A|.

So in conclusion, it is fairly straightforward to row reduce a matrix and still keep track
of what its determinant will be.
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Example 4.2. Suppose we know that the determinant of

A =

1 0 3
2 −5 1
0 1 2


is

det(A) = −5.

Then

1. Scalar multiplication: ∣∣∣∣∣∣∣
1 0 3
8 −20 4
0 1 2

∣∣∣∣∣∣∣ = −20, R2→ 4R2

2. Row addition: ∣∣∣∣∣∣∣
1 0 3
2 −5 1
3 1 11

∣∣∣∣∣∣∣ = −5. R3→ R3 + 3R1

3. Row swapping: ∣∣∣∣∣∣∣
2 −5 1
1 0 3
0 1 2

∣∣∣∣∣∣∣ = 5, R1↔ R2

4.2 Determinant of Upper-Diagonal Matrices

In the last section, we saw that when row reducing a matrix, you can write the determinant of
your original matrix in terms of the determinant of the row reduced matrix. In this section,
we will take advantage of this to reduce matrices to upper-diagonal matrices.

Definition 4.3. A upper-diagonal matrix is any n × n matrix where all entries below the
diagonal are zero:

A =


a11 a12 a13 . . . a1n
0 a22 a23 . . . a2n
0 0 a33 . . . a3n
...

...
...

. . .
...

0 0 0 . . . ann


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Proposition 4.4. Suppose A is n× n and upper-diagonal as above. Then

det(A) = a11 · a22 · a33 · . . . · ann.

Idea of proof. Expand along the first column to get

det(A) = a11

∣∣∣∣∣∣∣∣∣
a22 a23 . . . a2n
0 a33 . . . a3n
...

...
. . .

...
0 0 . . . ann

∣∣∣∣∣∣∣∣∣
Then expand this along its first column to get

det(A) = a11a22

∣∣∣∣∣∣∣∣∣
a33 a34 . . . a3n
0 a44 . . . a4n
...

...
. . .

...
0 0 . . . ann

∣∣∣∣∣∣∣∣∣
and so on until you get

det(A) = a11 · a22 · a33 · . . . · ann.

Example 4.5. The determinant of

A =


1 4 −24 64
0 −2 35 −19
0 0 3 97
0 0 0 −3


is

det(A) = 1 · (−2) · 3 · (−3) = 18.

Example 4.6. The identity matrix In has determinant det(In) = 1.

So if we row reduce a matrix to an upper-diagonal matrix, we can easily calculate the
determinant.
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Example 4.7. Using row reduction, calculate the determinant of the following matrix:

A =


2 8 4 −6
−2 −5 2 11
−1 2 3 13
1 4 2 −5


In the following row reduction, the matrix will be on the left side, the row operation in the
middle, and the new determinant in terms of |A| on the right side:

2 8 4 −6
−2 −5 2 11
−1 2 3 13
1 4 2 −5

 |A|


1 4 2 −3
−2 −5 2 11
−1 2 3 13
1 4 2 −5

 R1→ 1

2
R1

1

2
|A|


1 4 2 −3
0 3 6 5
0 6 5 10
0 0 0 −2


R2→ R2 + 2R1
R3→ R3 +R1
R4→ R4−R1

1

2
|A|


1 4 2 −3
0 3 6 5
0 0 −7 0
0 0 0 −2

 R3→ R3− 2R2
1

2
|A|

The last matrix is upper diagonal so∣∣∣∣∣∣∣∣∣
1 4 2 −3
0 3 6 5
0 0 −7 0
0 0 0 −2

∣∣∣∣∣∣∣∣∣ = 1 · 3 · (−7) · (−2) = 42 =
1

2
|A|.

Therefore,
|A| = 84.
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4.3 Combining Cofactor Expansion and Row Reduction

Sometimes the best approach is a combination of cofactor expansion and row reduction:
Reduce the matrix size through cofactor expansion when you can, and row reduce otherwise.

Example 4.8. Calculate the determinant of

A =


3 0 −4 2
−1 0 3 5
2 5 1 −2
−3 0 2 6


through a combination of row reduction and cofactor expansion:

1. The 2nd column has 3 zeros so we begin by expanding along this column:

|A| =

∣∣∣∣∣∣∣∣∣
3 0 −4 2
−1 0 3 5
2 5 1 −2
−3 0 2 6

∣∣∣∣∣∣∣∣∣ = −5

∣∣∣∣∣∣∣
3 −4 2
−1 3 5
−3 2 6

∣∣∣∣∣∣∣
2. Here we could do cofactor expansion again and calculate three 2× 2 determinants, but

we will use row reduction for the sake of practice:

− 5

∣∣∣∣∣∣∣
3 −4 2
−1 3 5
−3 2 6

∣∣∣∣∣∣∣
=− 5

∣∣∣∣∣∣∣
3 −4 2
−1 3 5
0 −2 8

∣∣∣∣∣∣∣ R3→ R3 +R1

=− 5

∣∣∣∣∣∣∣
0 5 17
−1 3 5
0 −2 8

∣∣∣∣∣∣∣ R1→ R1 + 3R2

= + 5

∣∣∣∣∣∣∣
−1 3 5
0 5 17
0 −2 8

∣∣∣∣∣∣∣ R1↔ R2

= + 5

∣∣∣∣∣ 5 17
−2 8

∣∣∣∣∣ Expand along column 1

=− 1 · 5(40 + 34)

=− 370.

So |A| = −370.
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5 The Adjugate Matrix and Inverses

In this section we will study the adjugate of matrix A, denoted by adj(A), and the important
identity

A−1 =
1

det(A)
adj(A),

which ties together the concepts of inverse matrices, determinants and cofactors.

5.1 The Cofactor and Adjugate Matrices

Recall that the cofactor Cij of a matrix A is given by

Cij = (−1)i+jMij

where Mij is the determinant of the matrix obtained by removing the ith row and jth column
of A.

Definition 5.1 (Cofactor matrix). The cofactor matrix C of A is the matrix

C =


C11 C12 . . . C1n

C21 C22 . . . C2n
...

...
. . .

...
Cn1 Cn2 . . . Cnn

 .
So it is the matrix that contains each of the cofactors of A.

Definition 5.2 (Adjugate matrix). The adjugate matrix adj(A) of A is the transpose of the
cofactor matrix C:

adj(A) = CT =


C11 C21 . . . Cn1
C12 C22 . . . Cn2

...
...

. . .
...

C1n C2n . . . Cnn


Theorem 5.3. Let A be an invertible matrix. Then

A−1 =
1

det(A)
adj(A).
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Example 5.4. Find the inverse of

A =

1 3 −1
1 2 1
5 −1 −1


using the above adjugate formula:

1. We begin by calculating the cofactor matrix:

C =

C11 C12 C13

C21 C22 C23

C31 C32 C33



=



∣∣∣∣∣ 2 1
−1 −1

∣∣∣∣∣ −

∣∣∣∣∣1 1
5 −1

∣∣∣∣∣
∣∣∣∣∣1 2
5 −1

∣∣∣∣∣
−

∣∣∣∣∣ 3 −1
−1 −1

∣∣∣∣∣
∣∣∣∣∣1 −1
5 −1

∣∣∣∣∣ −

∣∣∣∣∣1 3
5 −1

∣∣∣∣∣∣∣∣∣∣3 −1
2 1

∣∣∣∣∣ −

∣∣∣∣∣1 −1
1 1

∣∣∣∣∣
∣∣∣∣∣1 3
1 2

∣∣∣∣∣


=

−1 6 −11
4 4 16
5 −2 −1


2. This gives us the adjugate matrix

adj(A) = CT =

 −1 4 5
6 4 −2
−11 16 −1


3. Lastly, we need the determinant of A. We expand along the 1st row:

|A| =

∣∣∣∣∣∣∣
1 3 −1
1 2 1
5 −1 −1

∣∣∣∣∣∣∣
= 1

∣∣∣∣∣ 2 1
−1 −1

∣∣∣∣∣− 3

∣∣∣∣∣1 1
5 −1

∣∣∣∣∣+ (−1)

∣∣∣∣∣1 2
5 −1

∣∣∣∣∣
= −1− 3(−6) + (−1)(−11)

= 28.
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4. Now we can plug into the identity

A−1 =
1

det(A)
adj(A)

to get

A−1 =
1

28

 −1 4 5
6 4 −2
−11 16 −1


=

 −1/28 1/7 5/28
3/14 1/7 −1/14
−11/28 4/7 −1/28


6 Cramer’s Rule

Cramer’s Rule is a peculiar application of determinants to solve linear systems. It is par-
ticularly useful if you only want to find the solution for one variable xi without having to
calculate the entire solution for x1, x2, . . . , xn.

Consider the linear system/matrix equation

a11x1 + a12x2 + . . .+ a1nxn = b1

a21x1 + a22x2 + . . .+ a2nxn = b2
...

an1x1 + an2x2 + . . .+ annxn = bn,

or equivalently
Ax = b

with the coefficient matrix

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
. . .

...
an1 an2 . . . ann

 ,
and the constant vector

b =


b1
b2
...
bn

 .
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Suppose that A is invertible, so that the linear system has a unique solution for every b
and also so that det(A) 6= 0. Also, denote by Ai the matrix obtained from A by replacing
column i by the column vector b. So for example A1 is

A1 =


b1 a12 . . . a1n
b2 a22 . . . a2n
...

...
. . .

...
bn an2 . . . ann

 ,
A2 is

A2 =


a11 b1 . . . a1n
a12 b2 . . . a2n
...

...
. . .

...
a1n bn . . . ann

 ,
and An is

An =


a11 a12 . . . b1
a21 a22 . . . b2
...

...
. . .

...
an1 an2 . . . bn

 .
Theorem 6.1 (Cramer’s Rule). Consider the linear system

Ax = b,

where A is invertible. Then the unique solution for xi is given by

xi =
det(Ai)

det(A)
,

for each i = 1, 2, . . . , n.

Example 6.2. Using Cramer’s rule, solve the following linear system:
3x1 + 2x2 + x3 = 4

x1 + 2x3 = 10

−x1 + 2x2 + x3 = −4.

1. We have the coefficient matrix

A =

 3 2 1
1 0 2
−1 2 1

 ,
and the three matrices

A1 =

 4 2 1
10 0 2
−4 2 1

 , A2 =

 3 4 1
1 10 2
−1 −4 1

 , A3 =

 3 2 4
1 0 10
−1 2 −4

 .
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2. We calculate the determinants using expansion along the 1st row:

det(A) = 3

∣∣∣∣∣0 2
2 1

∣∣∣∣∣− 2

∣∣∣∣∣ 1 2
−1 1

∣∣∣∣∣+ 1

∣∣∣∣∣ 1 0
−1 2

∣∣∣∣∣ = −12− 6 + 2 = −16

det(A1) = 4

∣∣∣∣∣0 2
2 1

∣∣∣∣∣− 2

∣∣∣∣∣10 2
−4 1

∣∣∣∣∣+ 1

∣∣∣∣∣10 0
−4 2

∣∣∣∣∣ = 4(−4)− 2(18) + 20 = −32

det(A2) = 3

∣∣∣∣∣10 2
−4 1

∣∣∣∣∣− 4

∣∣∣∣∣ 1 2
−1 1

∣∣∣∣∣+ 1

∣∣∣∣∣ 1 10
−1 −4

∣∣∣∣∣ = 3(18)− 4(3) + 1(6) = 48

det(A3) = 3

∣∣∣∣∣0 10
2 −4

∣∣∣∣∣− 2

∣∣∣∣∣ 1 10
−1 −4

∣∣∣∣∣+ 4

∣∣∣∣∣ 1 0
−1 2

∣∣∣∣∣ = 3(−20)− 2(6) + 4(2) = −64

3. By Cramer’s rule, the solution is given by

x =

x1x2
x3

 =



det(A1)

det(A)

det(A2)

det(A)

det(A3)

det(A)


=



−32

−16

48

−16

−64

−16


=

 2
−3
4

 .

7 Determinant Properties

Here is a table of some of the most important properties of determinants:

Determinant of identity det(In) = 1

Multiplicative property det(AB) = det(A) det(B)

Determinant of inverse det(A−1) =
1

det(A)

Determinant of transpose det(AT ) = det(A)

Scalar multiple (n× n matrix) det(cA) = cn det(A)

NOT additive det(A+B) 6= det(A) + det(B)
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