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Lecture 4

July 30, 2015

1 Introduction to Integration

1.1 Background: Calculating Areas

Given a function such as the one in Figure 4.1, how do you calculate the area between the
curve y = f(x) and the x-axis from x = a to x = b? In the history of mathematics, this was
one of the biggest questions mathematicians struggled with. The were plenty of reasons for
wanting a mathematical method of calculating the area of irregular shapes:

� It would allow mathematicians to calculate the area of disks, ellipses, and other curved
geometric objects;

� Physicists and engineers could better calculate the area and volume of physical objects
they were working with;

� Governments and land-owners could determine the size of land they owned, in order
to estimate the value of their property.

Figure 1.1: How do you calculate the area under a curve?
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In spite of the huge interest, thousands of years would pass before mathematicians de-
veloped the mathematical framework to calculate the area of curved shapes. Finally, in the
middle of the 17th century, mathematicians Gottfried Leibniz and Isaac Newton invented
Calculus. Calculus is concerned with differentiation and integration, and they discovered
that there is a deep link between finding the area below a curve and differentiating a func-
tion. This is often regarded is the most important discovery in all of science.
Briefly put, they discovered that calculating the area below a function is the opposite of
differentiating a function.

1.2 Idea of Integration

Recall that in differentiation, we are given a function f(x) and we calculate its derivative,
f ′. Integration is the inverse operation: In integration we are given a derivative f ′ and we
calculate the original function f .

� So differentiation takes you from f to f ′.

� And integration takes you from f ′ to f .

Theorem 1.1 (Fundamental Theorem of Calculus). Newton and Leibniz’ famous discovery
is called the Fundamental Theorem of Calculus. What it essentially says is that while dif-
ferentiating a function gives you its rate of change, integrating a function gives you the area
under the function’s curve.

2 Integration

2.1 Antiderivative

The first concept we need for integration is the antiderivative:

Definition 2.1 (Antiderivative). Given a function f , a function F is called the antiderivative
of f if

F ′(x) = f(x).

So the antiderivative is naturally the opposite of a derivative:

Example 2.2. Every function f is an antiderivative to f ′.

Example 2.3. Let C be any constant. If F is an antiderivative to f , then F + C is also
an antiderivative to f . Why? When you differentiate a function, constant terms disappear,
since they have a zero slope:

(F (x) + C)′ = F ′(x) + (C)′ = F ′(x) + 0 = F ′(x) = f(x).
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Example 2.4. What is the antiderivative of 2x?

1. We know that the derivative of x2 is 2x. Therefore, x2 is an antiderivative of 2x.

2. However, the derivative of x2 + 1 is also 2x so x2 + 1 is another antiderivative of 2x.

Example 2.5. What is the antiderivative of x2?

1. We know that the derivative of x3 is 3x2. So by dividing by 3, we see that the derivative
of 1

3
x3 is x2. So 1

3
x3 is an antiderivative of x2.

2. 1
3
x3 + 20 is another antiderivative of x2.

2.2 Integral

The integral is the mathematical operator that takes a function f as an argument, and
returns its antiderivative F :

Definition 2.6 (Integral). The (indefinite) integral of f is defined to be∫
f(x) dx := F (x) + C,

where F is an antiderivative of f and C is an unspecified constant. The
∫

-symbol is called
the integral sign, the function f appearing between

∫
and dx is called the integrand. We

include the dx to specify that x is the variable of integration. We call this type of integral
an indefinite integral

Example 2.7. �
∫

2x dx = x2 + C

�
∫
x2 dx = 1

3
x3 + C

�
∫ 1

x
dx = lnx + C
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2.3 Integration Rules

Table of Rules:

Addition

∫
f(x) + g(x) dx =

∫
f(x) dx +

∫
g(x) dx

Scalar multiplication

∫
cf(x) dx = c

∫
f(x) dx

xn

∫
xn dx =

1

n + 1
xn+1 + C

1/x

∫
1

x
dx = lnx + C

ex
∫
ex dx = ex + C

Example 2.8. Calculate ∫
x2 + 2x + 4 dx :

1. We use the addition and scalar multiplication rules to separate the integral:∫
x2 + 2x + 4 dx =

∫
x2 dx + 2

∫
x dx + 4

∫
1 dx.

2. Each of these integrals are easy to calculate: We get∫
x2 dx + 2

∫
x dx + 4

∫
1 dx =

(
1

3
x3

)
+ 2

(
1

2
x2

)
+ 4 (x) + C

=
1

3
x3 + x2 + 4x + C.

3. So the answer is ∫
x2 + 2x + 4 dx =

1

3
x3 + x2 + 4x + C.
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3 Integration Techniques

Now we will look at three integration techniques, to help us calculate various integrals.

3.1 Integration by Parts

Recall the product rule for differentiation:

d

dx
(u · v) =

(
du

dx

)
· v + u ·

(
dv

dx

)
.

This can be rewritten as (
du

dx

)
· v =

d

dx
(u · v) − u ·

(
dv

dx

)
.

By taking the integral on each side, we get the equality∫ (
du

dx

)
· v dx =

∫ (
d

dx
(u · v) − u ·

(
dv

dx

))
dx

=

∫
d

dx
(u · v) dx−

∫
u ·
(

dv

dx

)
dx.

By the definition of the integral, we have∫
d

dx
(u · v) dx = u · v + C.

This gives us an integration identity called Integration by Parts:

Lemma 3.1. Let u and v be two functions. We then have the integration by parts identity∫
u′ · v dx = u · v −

∫
u · v′ dx.

(The C constant of u · v is absorbed into
∫
u · v′ dx)
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The integration by parts identity helps us solve a variety of otherwise difficult integrals:

Example 3.2. Using integration by parts, calculate the integral∫
x · lnx dx.

1. We want to write
∫
x · lnx dx in the form∫

u′ · v dx.

So we need to choose suitable functions u′(x) and v(x).

2. We try setting u′ = x and v = lnx. We then have the four expressions

u =
1

2
x2 u′ = x

v = lnx v′ =
1

x
.

Furthermore ∫
x · lnx dx =

∫
u′(x) · v(x) dx.

3. The integration by parts formula is given by∫
u′ · v dx = u · v −

∫
u · v′ dx.

Plugging in for our functions, we get the equation∫
x · lnx dx =

1

2
x2 · ln(x) −

∫
1

2
x2 · 1

x
dx

=
1

2
x2 lnx− 1

2

∫
x dx

=
1

2
x2 lnx− 1

2
· 1

2
x2 + C

=
1

2
x2 lnx− 1

4
x2 + C,

which is our final answer.
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3.2 Integration by Substitution

The next integration technique we will look at is Integration by Substitution. This
technique is best understood in practice so we start with an example:

Example 3.3. Calculate the integral ∫
1

1 − x
dx :

1. We don’t know what the antiderivative of
1

1 − x
is. However, we do know that the

antiderivative of
1

x
is ln x.

2. We would therefore like to rewrite the integral so that the integrand is of the form 1/x

instead of
1

1 − x
.

3. Define a function u := 1 − x. Then our integral can be written in the form∫
1

1 − x
dx =

∫
1

u
dx.

4. The integral
∫ 1

u
dx cannot be solved in this form, because we need the variable of the

integrand to match the variable of integration. Right now, the variable of integration
is x as in dx, while the variable of the integrand is u. So we need to replace dx with
du.

5. Since u = 1 − x, differentiating u with respect to x gives us

du

dx
= −1.

Cheating with algebra, we rearrange to get

dx = − du.

6. So we replace dx by (− du).∫
1

u
dx =

∫
1

u
(− du) = −

∫
1

u
du.

7. Since the antiderivative of
1

u
is lnu, we get that

−
∫

1

u
du = − lnu + C.

In other words, ∫
1

1 − x
dx = − lnu + C.

©Erlend Skaldehaug Riis 2015 7



FK1005 Lecture 4 3.3 Integration by Partial Fractions

8. We want the answer in terms of x, so as u = 1 − x, we get the final answer∫
1

1 − x
dx = − lnu + C = − ln(1 − x) + C.

Example 3.4. What is
∫ 1

x + k
dx for a general k?

1. We do integration by substitution again. We want the integrand in the form
1

u
, so

define u := x + k.

2. We then rewrite the integral as∫
1

x + k
dx =

∫
1

u
dx.

3. We differentiate u to get
du

dx
= 1

so
dx = du.

4. We substitute into the integral to get∫
1

u
dx =

∫
1

u
du = lnu + C.

5. We plug x + k back in for u to get the answer∫
1

x + k
dx = lnu + C = ln(x + k) + C.

So ∫
1

x + k
dx = ln(x + k) + C

for all k.

3.3 Integration by Partial Fractions

The last technique we will look at is Integration by Partial Functions.
We have already integrated some fractions. We saw for example that∫

1

x + k
dx = ln(x + k) + C.

But what about an expression like ∫
1

x2 + 4x + 3
dx?
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Example 3.5. Solve the integral ∫
1

x2 + 4x + 3
dx.

1. The first thing we will do is to factorize the quadratic term x2 + 4x + 3. We find that

x2 + 4x + 3 = (x + 3)(x + 1).

2. So ∫
1

x2 + 4x + 3
dx =

∫
1

(x + 3)(x + 1)
dx.

3. Now we want to write the integrand as partial fractions. That is, we want to find
constants A and B that satisfies:

A

x + 3
+

B

x + 1
=

1

(x + 3)(x + 1)
.

We solve this algebraically:

A

x + 3
+

B

x + 1
=

1

(x + 3)(x + 1)

A(x + 1)

(x + 3)(x + 1)
+

B(x + 3)

(x + 1)(x + 3)
=

1

(x + 3)(x + 1)

A(x + 1) + B(x + 3)

(x + 3)(x + 1)
=

1

(x + 3)(x + 1)

(A + B)x + (A + 3B)

(x + 3)(x + 1)
=

0x + 1

(x + 3)(x + 1)

(A + B)x + (A + 3B) = 0x + 1.

We need the x-coefficients on each side to match each other, and the constant terms
on each side to match:

A + B = 0

A + 3B = 1.

We subtract the first equation from the first:

A + 3B − (A + B) = 1 − 0

2B = 1

B =
1

2
,

and

A + B = 0

A +
1

2
= 0

A = −1

2
.
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4. So we have that

− 1

2(x + 3)
+

1

2(x + 1)
=

1

(x + 3)(x + 1)

We plug this into the integral:∫
1

x2 + 4x + 3
dx =

∫
− 1

2(x + 3)
+

1

2(x + 1)
dx

= −1

2

∫
1

x + 3
dx +

1

2

∫
1

x + 1
dx

= −1

2
ln(x + 3) +

1

2
ln(x + 1),

and we are done.

4 Using Integration to Calculate Area

Definition 4.1 (Definite Integral). Let f be a function with antiderivative F , and fix a < b.
The definite integral of f from a to b is defined to be∫ b

a

f(x) dx := F (b) − F (a).

Figure 4.1: How do you calculate the area under a curve?

Definition 4.2 (Area of Curve). For a function f(x), the area below the function’s curve
from a to b means the area between the x-axis and the function f(x) for a ≥ x ≥ b. See
picture above.

Theorem 4.3 (Fundamental Theorem of Calculus). Let f be a function and fix a < b. Then
the area below the curve of f from a to b is equal to∫ b

a

f(x) dx.
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Example 4.4. Find the area created by the curve of f(x) = 3x2 + 2x + 4 for x = 1 to 3.

A =

∫ 3

1

3x2 + 2x + 4 dx

=

∫ 3

1

3x2 dx +

∫ 3

1

2x dx +

∫ 3

1

4 dx

=
[
x3
]3
1

+
[
x2
]3
1

+ [4x]31

= (33 − 13) + (32 − 12) + (4 · 3 − 4 · 1)

= 27 − 1 + 9 − 1 + 12 − 4

= 42.

The area is 42 units.
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FORK1005
Preparatory Course in Mathematics 2015/16
Lecture 5: Functions of Several Variables

August 10, 2015

1 Introduction

Example 1.1. A company has to decide on the amount of money they spend on research
and on advertising. They know that for a given year, their profit function is given by

P (x, y) = −x2 − 2y2 + 30x + 15y − 50,

where x is amount spent on research and y is amount spent on advertising. x, y and P (x, y)
are all given in million USD. How does the company choose x and y so that profits P (x, y)
is maximized?

P (x, y) is an example of a function of several variables. In order to solve maximization
problems of this nature, we will need to extend our theory from functions of one variable.
Things become more complicated when dealing with multiple variables, but most concepts
are still the same:

� Instead of ordinary differentiation, we do partial differentiation: The function has
derivatives with respect to each of its variables.

� When maximizing functions of one variable, we set the derivative to zero. In higher
dimensions, we do the same, just that we have to set each partial derivative to zero.

� Second-order conditions follow the same principle as for one variable, but instead of
just one ordinary second-derivative, there are many partial second-derivatives, which
complicates things.

Notation. We will write f(x, y) or f(x, y, z) for ease of notation, but we could do all the
same mathematics with functions of n variables, f(x1, x2, . . . , xn).
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2 Partial Differentiation

Partial derivative is just the same as regular differentiation, just that we differentiate with
respect to one specific variable, and hold the other variables constant.

Definition 2.1 (Partial derivative). Consider a function of two variables, f(x, y). Its partial
derivative with respect to x is given by

f ′x(x, y) := lim
h→0

f(x + h, y)− f(x, y)

h

and its partial derivative with respect to y is given by

f ′y(x, y) := lim
h→0

f(x, y + h)− f(x, y)

h

Example 2.2. If
f(x, y) = x2 + y2,

then
f ′x(x, y) = 2x and f ′y(x, y) = 2y.

Similarly, if
g(x, y) = x2y,

then
g′x(x, y) = 2xy and g′y(x, y) = x2.

When you compute f ′
x, think of x as the variable and y as a constant.

Example 2.3. Consider the function f(x, y) = 2x2+y2 evaluated at the point (x, y) = (1, 1).
We have

f(x, y) = 2x2 + y2 f(1, 1) = 2 + 1 = 3

f ′x(x, y) = 4x f ′x(1, 1) = 4

f ′y(x, y) = 2y f ′y(1, 1) = 2

This tells us two things:

� f is increasing at a rate of 4 units in the direction of x at the point (1, 1);

� f is increasing at a rate of 2 units in the direction of y at the point (1, 1).

3 First-Order Conditions

Theorem 3.1 (First-order conditions). Suppose (x∗, y∗) is a maximum point or a minimum
point of f(x, y). Then

f ′x(x, y) = f ′y(x, y) = 0.
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Definition 3.2 (Stationary point). A stationary point (x∗, y∗) of f is any point where

f ′x(x, y) = f ′y(x, y) = 0.

Corollary 3.3. So all maximum and minimum points are also stationary points.

Example 3.4. Take the function f(x, y) = x2+y2. Suppose we want to find all its maximum
and minimum points. We find its partial derivatives, f ′x(x, y) = 2x and f ′y(x, y) = 2y and
set them equal to zero:

f ′x(x, y) = 2x = 0 and f ′y(x, y) = 2y = 0

so (x, y) = (0, 0 is the only stationary point. And as you can see from the following graph,
(0, 0) is a global minimum:

4 Second-Order Derivatives

4.1 Saddle Points

So the first-order conditions (FOCs) tell us that any maximum or minimum point is a
stationary point. But this is not enough to be able to maximize or minimize a function.
Firstly, we don’t know if a stationary point is a minimum point or a maximum point, or a
saddle point.
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Example 4.1. The function f(x, y) = −x2 + y2 has a stationary point at (x, y) = (0, 0).
But as you can see from the graph below, it is neither a maximum or a minimum point. If
you move in the x-direction, it decreases, but if you move in the y-direction, it increases.
Such a point is called a saddle point.

We can classify stationary points into three types:

� Maxima

� Minima

� Saddle points

4.2 Second-Order Partial Derivatives

To determine whether a stationary point is a maximum, minimum or neither, we need
second-order partial derivatives. This is just a (partial) derivative of a partial derivative.

Definition 4.2 (Second-order partial derivative). Let f(x, y) be a function of two variables.
Then its four second-order partial derivatives are

f ′′xx(x, y) := lim
h→0

f ′x(x + h, y)− f ′x(x, y)

h
,

f ′′xy(x, y) := lim
h→0

f ′x(x, y + h)− f ′x(x, y)

h
,

f ′′yy(x, y) := lim
h→0

f ′y(x, y + h)− f ′y(x, y)

h

and

f ′′yx(x, y) := lim
h→0

f ′y(x + h, y)− f ′y(x, y)

h
.
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Example 4.3. Consider the function f(x, y) = x2 + y2. We have the partial derivatives

f ′x(x, y) = 2x, and f ′y(x, y) = 2y,

and the second-order partial derivatives

f ′′xx(x, y) = 2,

f ′′xy(x, y) = 0,

f ′′yy(x, y) = 2

and
f ′′yx(x, y) = 0.

Example 4.4. Consider the function g(x, y) = exy + 2xy − xy2. We have the partial
derivatives

g′x(x, y) = exy + 2y − y2, and f ′y(x, y) = ex + 2x− 2xy,

and the second-order partial derivatives

g′′xx(x, y) = exy,

g′′xy(x, y) = ex + 2− 2y,

g′′yy(x, y) = ex + 2− 2y

and
g′′yx(x, y) = −2x.

Notice in the two previous examples that f ′′xy = f ′′yx and g′′xy = g′′yx. This is not a
coincidence:

Theorem 4.5 (Schwarz’ theorem). For (almost 1) all functions f , we have the equality

f ′′xy(x, y) = f ′′yx(x, y).

So this simplifies the calculations of our second-order partial derivatives a bit: We only
need to compute three second-order partial derivatives, not all four.

Notation. There are many notations in use for expressing partial derivatives:

f ′′xy(x, y) = fxy(x, y) = ∂xyf(x, y) =
∂2f

∂xy
(x, y)

Here we will stick to f ′′xy(x, y), but in other literature/courses/websites you might find dif-
ferent notation.

1It is true for all functions you will see in this course. The requirement is that f must have continuous
second-order partial derivatives.
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5 Second Partial Derivative Test

The second partial derivative test is a test that will tell us if any stationary point is a
minimum, a maximum or a saddle point:

Theorem 5.1. Suppose (x∗, y∗) is a stationary point of f(x, y). Define

D(x, y) := f ′′xx(x∗, y∗)f
′′
yy(x∗, y∗)−

(
f ′′xy(x∗, y∗)

)2
.

Then

1. If
D(x, y) > 0 and f ′′xx(x∗, y∗) > 0,

then (x∗, y∗) is a local minimum of f ;

2. If
D(x, y) > 0 and f ′′xx(x∗, y∗) < 0,

then (x∗, y∗) is a local maximum of f ;

3. If
D(x, y) < 0,

then (x∗, y∗) is a saddle point of f .

4. If
D(x, y) = 0,

then the test is inconclusive.

Example 5.2. Consider the function f(x, y) = x2 + y2. It has a stationary point at (0, 0).
Its second order partial derivatives are

f ′′xx(x, y) = 2, f ′′xy(x, y) = 0 and f ′′yy(x, y) = 2.

Therefore

D(0, 0) = f ′′xx(0, 0)f ′′yy(0, 0)−
(
f ′′xy(0, 0)

)2
= 22 − 0 = 4 > 0

and
f ′′xx(x, y) = 2 > 0

so by the second partial derivative test, (0, 0) is a local minimum.

Example 5.3. Consider the function g(x, y) = −x2 + y2. It has a stationary point at (0, 0).
Its second order partial derivatives are

g′′xx(x, y) = −2, g′′xy(x, y) = 0 and g′′yy(x, y) = 2.

Therefore

g′′xx(0, 0)g′′yy(0, 0)−
(
g′′xy(0, 0)

)2
= −2 · 2− 0 = −4 < 0

so by the second partial derivative test, (0, 0) is a saddle point.
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5.1 The Hessian Matrix

With a very basic knowledge of 2×2 matrices and determinants, we can rephrase the second
partial derivative test in a more concise way.

Definition 5.4 (Determinant). Let A =

[
a b
c d

]
be a 2 × 2 matrix. Then its determinant

det(A) is the value
det(A) = ad− bc.

Definition 5.5 (Hessian matrix). For a function f(x, y), the Hessian matrix, Hf , is the
matrix containing the second-order partial derivatives of f :

Hf(x, y) =

[
f ′′xx(x, y) f ′′xy(x, y)
f ′′yx(x, y) f ′′yy(x, y)

]

Proposition 5.6. The determinant of Hf(x, y), denoted D(x, y), is given by

D(x, y) = f ′′xx(x, y)f ′′yy(x, y)−
(
f ′′xy(x, y)

)2
.

This is exactly the expression we calculate in the second partial derivative test. So we
can rephrase the test:

Theorem 5.7. Suppose (x∗, y∗) is a stationary point of f(x, y). Then

1. If
D(x, y) > 0 and f ′′xx(x∗, y∗) > 0,

then (x∗, y∗) is a local minimum of f ;

2. If
D(x, y) > 0 and f ′′xx(x∗, y∗) < 0,

then (x∗, y∗) is a local maximum of f ;

3. If
D(x, y) < 0,

then (x∗, y∗) is a saddle point of f .

4. If
D(x, y) = 0,

then the test is inconclusive.
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6 Maximizing/Minimizing functions

Going back to our initial problem:

Example 6.1. You want to maximize a company’s profit function, given by

P (x, y) = −x2 − 2y2 + 30x + 15y − 50,

where x is amount spent on research and y is amount spent on advertising, all given in
millions USD.

1. First you want to locate stationary points, so you compute partial derivatives and set
them equal to 0:

P ′x(x, y) = −2x + 30 = 0 =⇒ x = 15

P ′y(x, y) = −4y + 15 = 0 =⇒ y =
15

4
.

So the only stationary point is (x, y) = (15, 15/4).

2. We are looking for a maximum, so we compute the second-order partial derivatives to
do the second partial derivative test:

P ′′xx(x, y) = −2,

P ′′yy(x, y) = −4

and
P ′′xy(x, y) = 0.

This means that

D(15, 15/4)) = P ′′xx(15, 15/4)P ′′yy(15, 15/4)−
(
P ′′xy(15, 15/4)

)2
= (−2)·(−4)−0 = 8 > 0,

and
P ′′xx(15, 15/4) = −2 < 0

so by the second partial derivative test, (15, 15/4) is a maximum.

So to maximize profits, the company should invest 15, 000, 000 USD in research,
and 15, 000, 000/4 = 3, 750, 000 USD in advertising.
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7 Global vs Local Maximum & Minimum

The second partial derivative test locates local maxima and minima, but not necessarily
global maxima or minima. A local maximum of a function maximizes the function within a
bounded area, but not necessarily everywhere. For example, the function in the figure below
has a local maximum at x = 0, because in a neighborhood around x = 0 (the red square), it
maximizes the function. But outside of the red square, there are points where f(x) is larger
than f(0). Therefore, x = 0 is not a global maximum.

Figure 7.1: This function has a local maximum at x = 0, but it is not a global maximum.

In contrast, the maximum below is also a global maximum:

Figure 7.2: This function has a global maximum at x = 0.

Definition 7.1 (Local maximum). A point (x∗, y∗) is a local maximum of f if (x∗, y∗)
maximizes f for all points (x, y) sufficiently close2 to (x∗, y∗).

Definition 7.2 (Global maximum). A point (x∗, y∗) is a global maximum of f if (x∗, y∗)
maximizes f for all possible points (x, y).

The second partial derivative test tells you if a point is a local maximum or
minimum. It does not tell you if this maximum or minimum is global.

2’Sufficiently close’ meaning all points within a radius r > 0 to (x∗, y∗), where you may set r to be as
small as you like.
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8 Convex vs Concave Functions

If a function is convex or concave, we can determine whether a local maximum or minimum
is also a global maximum/minimum.

Definition 8.1. A function f(x, y) is convex if

D(x, y) = f ′′xx(x, y)f ′′yy(x, y)−
(
f ′′xy(x, y)

)2
≥ 0

and
f ′′xx(x, y) ≥ 0

for all points (x, y).

Definition 8.2. A function f(x, y) is concave if

D(x, y) = f ′′xx(x, y)f ′′yy(x, y)−
(
f ′′xy(x, y)

)2
≥ 0

and
f ′′xx(x, y) ≤ 0

for all points (x, y).

Theorem 8.3.

� If f(x, y) is convex, all stationary points of f are global minima.

� If f(x, y) is concave, all stationary points of f are global maxima

Example 8.4. Consider the function f(x, y) = x2 + y2. We saw earlier that it had a local
minimum at (0, 0). We note that

f ′′xx(x, y) = 2, f ′′yy(x, y) = 2 and f ′′xy(x, y) = 0.

Therefore

D(x, y) = f ′′xx(x, y)f ′′yy(x, y)−
(
f ′′xy(x, y)

)2
= 2 · 2− 0 = 4 > 0

and
f ′′xx(x, y) = 2 > 0

for all (x, y), so f is convex. Therefore, (0, 0) is a global minimum.
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Example 8.5. Now we return to the profit maximization problem

P (x, y) = −x2 − 2y2 + 30x + 15y − 50.

We found that P had a local maximum at (15, 15/4), but we did not verify that it was a
global maximum. We have

P ′′xx(x, y) = −2,

P ′′yy(x, y) = −4

and
P ′′xy(x, y) = 0.

This means that

D(x, y)) = P ′′xx(x, y)P ′′yy(x, y)−
(
P ′′xy(x, y)

)2
= (−2) · (−4)− 0 = 8 > 0,

and
P ′′xx(x, y) = −2 < 0

so P is concave. Therefore, (15, 15/4) is a global maximum.
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