FORK1005
 Exercises for Lecture 3

July 29, 2015

1 Introduction to Differentiation

Exercise 1.1. Below is the graph of $f(x)=x^{2}$. Using the red tangent lines, evaluate $f^{\prime}(-2)$ and $f^{\prime}(1)$. In other words, determine the slope at each of the points $(-2,4)$ and $(1,1)$.

Exercise 1.2. For each of the four coordinates marked in red, determine the sign (plus or minus) of the derivative $f^{\prime}(x)$ at that point.

2 Differentiation

Exercise 2.1. Derivate the following functions:
(a) $f(x)=3 x^{2}$
(e) $f(x)=\sqrt{x}$
(b) $f(x)=x^{4}-x^{3}+\frac{1}{2} x+95$
(f) $f(x)=\frac{1}{x}$
(c) $f(x)=x^{3}$ from definition.
(g) $f(x)=x^{1 / 3}$
(d) $f(x)=a x^{2}+b x+c$

Exercise 2.2.

(a) The demand function for a product with price P is given by the formula $D(P)=\alpha-\beta P$.

Find $\frac{\mathrm{d} D}{\mathrm{~d} P}$.
(b) The cost of producing x units of the product is given by the formula $C(x)=p+q x^{2}$. Find $C^{\prime}(x)$, the marginal cost.

Exercise 2.3. Find the slope of the tangent to the graph of f at the given coordinates:
(a) $f(x)=3 x-2$ at $(0,-2)$
(c) $f(x)=\frac{3}{x}+4$ at $(3,5)$
(b) $f(x)=x^{2}+1$ at $(1,2)$
(d) $f(x)=x^{4}-2$ at $(1,-1)$

Exercise 2.4. Write the derivatives of the following functions in terms of $f^{\prime}(x)$. (For example, $\left.(2 f(x))^{\prime}=2 f^{\prime}(x)\right)$
(a) $5+f(x)$
(d) $-\frac{f(x)}{5}$
(b) $f(x)-\frac{1}{2}$
(c) $4 f(x)$
(e) $\frac{A f(x)+B}{C}$

Exercise 2.5. Compute the following:
(a) $\frac{\mathrm{d}}{\mathrm{d} r}\left(4 \pi r^{2}\right)$
(c) $\frac{\mathrm{d}}{\mathrm{d} A}\left(\frac{1}{A^{2} \sqrt{A}}\right)$
(b) $\frac{\mathrm{d}}{\mathrm{d} y}\left(A y^{b+1}\right)$

Exercise 2.6. An equivalent formulation of the definition of the derivative is the following:

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}
$$

Use this to find $f^{\prime}(a)$ when $f(x)=x^{2}$.

2.3 Table of Derivatives and Rules

Exercise 2.7. Calculate derivatives for the following functions:
(a) $h(x)=\left(x^{3}-x\right) \cdot\left(5 x^{4}+x^{2}\right)$
(d) $F(x)=\frac{3 x-5}{x-2}$
(b) $f(x)=(3 x+1)\left(\frac{1}{x^{2}}+\frac{1}{x}\right)$
(e) $f(x)=\frac{\sqrt{x}-2}{\sqrt{x}+1}$
(c) $x(t)=t^{n}(a \sqrt{t}+b)$

Exercise 2.8. Let $C(x)$ be the total cost of producing x units of a commodity. Then the average cost of producing x units is given by $\frac{C(x)}{x}$. Write $\frac{\mathrm{d}}{\mathrm{d} x}\left(\frac{C(x)}{x}\right)$ in terms of C^{\prime} and C.

2.4 Chain rule

Exercise 2.9.

(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=u^{5}$ and $u=1-x^{3}$.
(d) Differentiate $y=\left(\frac{x-1}{x+3}\right)^{1 / 3}$.
(b) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ when $y=\frac{10}{\left(x^{2}+4 x+5\right)^{7}}$.
(e) Differentiate $y=\sqrt{x^{2}+1}$.
(c) Differentiate $y=\left(x^{3}+x^{2}\right)^{50}$.

3 Applications of the Derivative

3.1 Increasing vs Decreasing Functions

Exercise 3.1. Compute the derivatives of the following functions, and thus determine whether they are increasing, decreasing or are stationary at $x=1$:
(a) $f(x)=3 x$
(d) $f(x)=x^{3}-9 x^{2}+15 x-5$
(b) $f(x)=x^{2}$
(e) $f(x)=e^{x}-x^{2}$
(c) $f(x)=x^{2}-4 x+3$
(f) $f(x)=\ln (x)-x$

Exercise 3.2. Determine for which intervals $f(x)=-\frac{1}{3} x^{3}+2 x^{2}-3 x+1$ is increasing and decreasing.

3.2 Locating Maxima and Minima

Exercise 3.3. Differentiate the following functions, and thus locate all stationary points:
(a) $f(x)=x^{2}$
(d) $f(x)=x^{3}+3 x^{2}-9 x+2$
(b) $f(x)=\ln (x)-x$
(e) $f(x)=g\left(x^{2}-x\right)$ where g is a function with stationary points at $x=2$.
(c) $f(x)=x^{2}-x$

3.3 Classifying Stationary Points

Exercise 3.4. Find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$ when $f(x)=2 x^{5}-3 x^{3}+2 x$.
Exercise 3.5. Find all stationary points of the following functions, and apply the secondorder condition to determine whether it is a maximum or a minimum:
(a) $f(x)=x^{2}$
(c) $f(x)=2 x^{3}-15 x^{2}-84 x+108$
(b) $f(x)=-(x+4)^{2}$
(d) $f(x)=3 e^{x}-\frac{1}{2} e^{3} x^{2}$

