FORK1003
 Exercises for Lecture 2

August 2, 2016

1 Matrices and Matrix Operations

1.1 Matrix Defined

Exercise 1.1 (Matrix coordinates).

$$
\left[\begin{array}{ccccc}
5 & -23 & 18 & 39 & -30 \\
6 & 8 & -5 & 13 & 7 \\
1 & -9 & -12 & 64 & -15 \\
-4 & -11 & 46 & 81 & -2
\end{array}\right]
$$

For the following coordinates, give the corresponding entry in the matrix above:
(a) $(2,4)$
(c) $(1,4)$
(b) $(3,1)$
(d) $(4,2)$

1.2 Addition and Scalar Multiplication

Exercise 1.2. Define the matrices

$$
A=\left[\begin{array}{cc}
3 & -2 \\
6 & 5
\end{array}\right], \quad B=\left[\begin{array}{cc}
1 & 0 \\
-8 & 2
\end{array}\right], \quad C=\left[\begin{array}{ccc}
2 & -4 & 3 \\
-5 & 0 & -2
\end{array}\right], \quad D=\left[\begin{array}{ccc}
1 & 2 & -3 \\
0 & 8 & -7
\end{array}\right] .
$$

Calculate each of the following expressions, if it is defined:
(a) $A+B$
(d) $3 B$
(b) $C-D$
(e) $2 C-3 D$
(c) $B-D$

1.3 Matrix Multiplication

Exercise 1.3. Compute the following dot products:
(a) $\left[\begin{array}{llll}1 & 3 & -2 & 0\end{array}\right]\left[\begin{array}{c}3 \\ -2 \\ -1 \\ 4\end{array}\right]$
(c) $\left[\begin{array}{lllll}a & b & c & d & e\end{array}\right]\left[\begin{array}{c}1 \\ -1 \\ 2 \\ 0 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & -1\end{array}\right]\left[\begin{array}{c}16 \\ 3\end{array}\right]$

Exercise 1.4.

$$
\begin{array}{cc}
A=\left[\begin{array}{cc}
3 & 2 \\
-1 & 0
\end{array}\right], \quad B=\left[\begin{array}{ccc}
2 & 0 & 1 \\
-3 & -1 & 2
\end{array}\right], \quad C=\left[\begin{array}{ccc}
2 & -4 & 0 \\
-5 & 0 & 2 \\
1 & 3 & -1
\end{array}\right] \\
D=\left[\begin{array}{cc}
1 & 2 \\
-3 & 0 \\
8 & -7
\end{array}\right], \quad E=\left[\begin{array}{c}
4 \\
-1 \\
2
\end{array}\right], \quad F=\left[\begin{array}{lll}
4 & 2 & -3
\end{array}\right]
\end{array}
$$

Compute each of the following expression, if it is defined:
(a) $A B$
(d) $B C$
(g) $F C$
(b) $B A$
(e) $C E$
(h) $E F$
(c) $C B$
(f) $C F$
(i) $F E$

1.5 Transpose

Exercise 1.5.

$$
\begin{gathered}
A=\left[\begin{array}{cc}
1 & 4 \\
-2 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 0 & -1 \\
1 & 2 & -4
\end{array}\right] \\
C=\left[\begin{array}{ccc}
5 & -1 & -2 \\
0 & 3 & 1 \\
1 & -4 & 0
\end{array}\right], \quad D=\left[\begin{array}{lll}
2 & -1 & 3
\end{array}\right]
\end{gathered}
$$

Compute the following expressions:
(a) A^{T}
(d) $B^{T} A$
(b) B^{T}
(e) $A^{T} B$
(c) $C D^{T}$

1.7 Square Matrices

Exercise 1.6. Let

$$
A=\left[\begin{array}{cc}
3 & -4 \\
-1 & 2
\end{array}\right]
$$

Compute A^{2}.
Exercise 1.7. This question is about diagonal matrices.
(a) Calculate $\left[\begin{array}{ccc}4 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 3\end{array}\right]^{2}$
(b) If $A=\left[\begin{array}{ccc}a_{1} & 0 & 0 \\ 0 & a_{2} & 0 \\ 0 & 0 & a_{3}\end{array}\right]$, can you write A^{k} in a general form, for any positive integer k ?

2 Inverse Matrices

2.1 Briefly on Determinants

Exercise 2.1. By calculating the determinant, determine whether the following 2×2 matrices are invertible:
(a) $A=\left[\begin{array}{cc}3 & -1 \\ -6 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{cc}1 & 3 \\ 2 & -3\end{array}\right]$
(c) $C=\left[\begin{array}{ll}2 & 1 \\ 0 & 0\end{array}\right]$

2.2 Finding the Inverse

Exercise 2.2. Calculate the inverses of the following matrices using row reduction. Check each answer by seeing if $A A^{-1}=I_{n}$.
(a) $A=\left[\begin{array}{ll}4 & -2 \\ 3 & -1\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 5 & 11 \\ -1 & 0 & -8\end{array}\right]$
(c) $C=\left[\begin{array}{llll}0 & 0 & 1 & 2 \\ 0 & 2 & 8 & 6 \\ 3 & 7 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]$

2.3 Extra: Rearranging Matrix Equations

Exercise 2.3. Suppose $n \times n$ matrices A, B, C and D are all invertible and satisfy the equation

$$
A=B\left(D-3 I_{n}\right) C
$$

Solve for D in terms of A, B and C. (That is, rearrange to get D by itself on one side of the equation)

3 Linear Systems as Matrix Equations

Exercise 3.1. Write the following linear systems as matrix equations:
(a) $\left\{\begin{aligned} x_{2}-3 x_{3}+x_{4} & =2 \\ -x_{1}+x_{3}+6 x_{4} & =-1 \\ 9 x_{1}-7 x_{2}+x_{3} & =13\end{aligned}\right.$
(b) $\left\{\begin{array}{l}x_{1}-x_{2}=3 \\ x_{1}+x_{2}=6\end{array}\right.$
(c) $\left\{\begin{aligned} x_{2}-x_{4} & =1 \\ 3 x_{1}-4 x_{2}+5 x_{3} & =3 \\ 15 x_{2}+2 x_{3} & =-20 \\ x_{1}+x_{2}-3 x_{3}-4 x_{4} & =0\end{aligned}\right.$

3.2 Solving Linear Systems Through Matrix Equations

Exercise 3.2. Solve the following linear systems by inverting their coefficient matrices:
(a) $\left\{\begin{array}{l}2 x_{1}-x_{2}=2 \\ 4 x_{1}+2 x_{2}=-4\end{array}\right.$
(b) $\left\{\begin{aligned} 3 x_{1}-x_{2}+x_{3} & =4 \\ 2 x_{1}+x_{3} & =1 \\ -4 x_{2}-4 x_{3} & =-2\end{aligned}\right.$

4 Linear Systems as Linear Combinations of Columns

Exercise 4.1. Write out the following linear system as a linear combination of columns:

$$
\left\{\begin{aligned}
x_{1}+3 x_{3}-x_{4} & =2 \\
5 x_{2}-x_{3}-2 x_{4} & =0 \\
6 x_{1}-7 x_{2}+x_{3} & =-3
\end{aligned}\right.
$$

4.2 Linear Combinations

Exercise 4.2.

$$
\mathbf{v}_{1}=\left[\begin{array}{l}
2 \\
1 \\
0 \\
0
\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
0
\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] .
$$

When possible, write each of the following vectors as a linear combination of the vectors above:
(a) $\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right]$
(b) $\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0\end{array}\right]$
(d)
$\left[\begin{array}{l}5 \\ 4 \\ 3 \\ 2\end{array}\right]$
(e)
$\left[\begin{array}{l}6 \\ 3 \\ 1 \\ 0\end{array}\right]$
(f)
$\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$

4.4 Solving Linear Systems

Exercise 4.3. Determine whether the following sets of vectors span the given vector space:
(a) $\mathbb{R}^{2} ; \quad \mathbf{v}_{1}=\left[\begin{array}{l}3 \\ 1\end{array}\right], \quad \underline{\mathbf{v}}_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(b) $\mathbb{R}^{3} ; \quad \underline{\mathbf{v}}_{1}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], \quad \underline{\mathbf{v}}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$
(c) $\mathbb{R}^{3} ; \quad \mathbf{v}_{1}=\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 2 \\ 3\end{array}\right]$
(d) $\mathbb{R}^{4} ; \quad \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right], \quad \mathbf{v}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 1\end{array}\right], \quad \mathbf{v}_{3}=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right], \quad \underline{\mathbf{v}}_{4}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$

Exercise 4.4. By finding the span of the column vectors, show that the linear system

$$
\left\{\begin{aligned}
3 x_{1}+x_{3} & =b_{1} \\
x_{1}+x_{2} & =b_{2} \\
2 x_{1}+x_{2}-x_{3} & =b_{3}
\end{aligned}\right.
$$

has a solution for every $\underline{\mathbf{b}}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

