FORK1003
 Exercises for Lecture 3

August 3, 2016

1 Introduction to Determinants

Exercise 1.1. Calculate the determinants of the following 2×2 matrices:
(a) $A=\left[\begin{array}{cc}2 & 6 \\ -1 & 3\end{array}\right]$
(b) $B=\left[\begin{array}{cc}0 & 13 \\ -2 & 1\end{array}\right]$
(c) $C=\left[\begin{array}{cc}2 & 3 \\ -4 & -6\end{array}\right]$

2 Clever Trick for 3×3 Determinants

Exercise 2.1. Using the "drawing lines" method, calculate the determinants of the following matrices:
(a) $A=\left[\begin{array}{ccc}3 & -1 & 2 \\ 4 & 0 & -3 \\ 0 & 10 & 1\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}2 & 4 & 6 \\ -1 & -2 & -3 \\ 5 & 3 & -4\end{array}\right]$
(c) $C=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & -4 & 0 \\ -1 & 2 & 3\end{array}\right]$

3 Cofactor Expansion

3.1 Minors and Cofactors

Exercise 3.1. For a matrix A, denote by $A_{i j}$ the matrix obtained from A by removing the i th row and the j th column. For

$$
A=\left[\begin{array}{cccc}
7 & -5 & 2 & 4 \\
-2 & 0 & 3 & 1 \\
-1 & 2 & 0 & 6 \\
3 & -2 & -5 & 1
\end{array}\right]
$$

write the following matrices
(a) A_{11}
(b) A_{23}
(c) A_{14}

Exercise 3.2. Let A be the matrix

$$
A=\left[\begin{array}{ccc}
3 & -2 & 1 \\
4 & 6 & 0 \\
-1 & -2 & 5
\end{array}\right]
$$

Calculate the following minors and cofactors:
(a) M_{21}
(c) C_{11}
(b) M_{33}
(d) C_{32}

3.2 Cofactor Expansion

Exercise 3.3. Calculate the determinants of the following matrices by cofactor expansion along a suitable row or column:
(a) $A=\left[\begin{array}{ccc}4 & -2 & -1 \\ 0 & 1 & 3 \\ 2 & -3 & 1\end{array}\right]$
(c) $C=\left[\begin{array}{cccc}2 & -3 & 0 & 5 \\ 28 & 13 & 2 & -6 \\ 1 & -1 & 0 & 3 \\ 2 & 3 & 0 & -4\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}-2 & 3 & -1 \\ 0 & 5 & 0 \\ 7 & -2 & 1\end{array}\right]$
(d) $D=\left[\begin{array}{cccc}3 & 2 & -5 & 2 \\ -2 & 1 & -1 & 4 \\ -3 & -1 & -6 & 2 \\ 0 & -4 & 0 & 0\end{array}\right]$

4 Determinants by Row Reduction

4.1 Determinants and Elementary Row Operations

Exercise 4.1. Suppose we have a 3×3 matrix

$$
A=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]
$$

with the matrix $|A|$. Write the determinants of the following matrices in terms of $|A|$:
(a) $B=\left[\begin{array}{lll}d & e & f \\ a & b & c \\ g & h & i\end{array}\right]$
(d) $E=\left[\begin{array}{lll}g & h & i \\ a & b & c \\ d & e & f\end{array}\right]$
(b) $C=\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ -2 g & -2 h & -2 i\end{array}\right]$
(e) $F=\left[\begin{array}{ccc}a & b & c \\ 2 d-3 a & 2 e-3 b & 2 f-3 c \\ g & h & i\end{array}\right]$
(c) $D=\left[\begin{array}{ccc}a+3 d & b+3 e & c+3 f \\ d & e & f \\ g & h & i\end{array}\right]$
(f) $G=\left[\begin{array}{ccc}2 a & 2 b & 2 c \\ g & h & i \\ -d & -e & -f\end{array}\right]$

Exercise 4.2. Using row reduction and the formula for determinants of upper-diagonal matrices, calculate determinants for the following matrices:
(a) $A=\left[\begin{array}{ccc}6 & 2 & -4 \\ 3 & -1 & 5 \\ 0 & 1 & 3\end{array}\right]$
(c) $C=\left[\begin{array}{cccc}1 & 2 & 0 & -1 \\ 1 & 4 & 1 & 2 \\ 2 & 2 & 3 & -5 \\ 6 & -4 & 0 & 2\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}-5 & 2 & 1 \\ -1 & 3 & 2 \\ 2 & 7 & 4\end{array}\right]$
(d) $D=\left[\begin{array}{cccc}3 & 2 & 1 & -3 \\ 4 & 6 & -1 & -2 \\ 0 & 1 & 2 & 1 \\ 1 & 4 & 3 & 1\end{array}\right]$

4.3 Combining Cofactor Expansion and Row Reduction

Exercise 4.3. Calculate the determinants of the following matrices through a combination of row reduction and cofactor expansion:
(a) $A=\left[\begin{array}{cccc}4 & 2 & -4 & 6 \\ 1 & 0 & 2 & -2 \\ 2 & 0 & 0 & 0 \\ 6 & 3 & -7 & 1\end{array}\right]$
(b) $B=\left[\begin{array}{ccccc}1 & 5 & 7 & 3 & -4 \\ 0 & 1 & 0 & 3 & -1 \\ 0 & -2 & 5 & 1 & 2 \\ 0 & 3 & 0 & -1 & 3 \\ -1 & -5 & 1 & 2 & 1\end{array}\right]$

5 The Adjugate Matrix and Inverses

Exercise 5.1. Find the inverses of the following matrices by calculating their adjugate matrix:
(a) $A=\left[\begin{array}{ccc}3 & 0 & 1 \\ -1 & 2 & -2 \\ 0 & -3 & 4\end{array}\right]$
(b) $B=\left[\begin{array}{ccc}6 & 2 & -1 \\ 0 & 3 & -2 \\ -1 & 1 & -2\end{array}\right]$

6 Cramer's Rule

Exercise 6.1. Use Cramer's rule to solve for the following linear systems:
(a)

$$
\left\{\begin{aligned}
-x_{1}+x_{2}+x_{3} & =1 \\
x_{1}+2 x_{2} & =0 \\
x_{1}+2 x_{2}+3 x_{3} & =0
\end{aligned}\right.
$$

(b)

$$
\left\{\begin{aligned}
x_{1}+x_{2}+3 x_{3} & =3 \\
-4 x_{1}+x_{2}-3 x_{3} & =2 \\
5 x_{1}+2 x_{2}+2 x_{3} & =-1 .
\end{aligned}\right.
$$

