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ANSWERS PAMPHLET 89

Solving for A and substituting gives 2x> — x — 2 = 0. Thus x =~ 1.165,
andso y = x* = 1.357, Finally V(y — x?) = (—2x,1) # (0, 0) so NDCQ
holds.

18.4 The location and type of the critical points are independent of k > 0, so
assume without loss of generality that &£ = 1.
1—a

max  xix

subjectto  (px) + pax; — 1) = 0.
The Lagrangian is

L =x{x}™" = Mpixy + poxz — D).
The first order conditions are

Ly, =axf 6l — Apy = 0

Ly =0 —axix—Ap, =0

L,\ = D +p3x2-—f=0.

The solution 18

god U=l
P y 2

Since the constraint is linear, NDCQ holds.
18.5 min  x?+3* + 2

subjectto 3x+y+z=35
x+y+z=1.

The Lagrangian is
L :x2+y2+22*/\](3x+y+z—5)*hg(x+yz— 1).
The first order conditions are

Ly=2x—-3AM - A =0
Ly=2y—A—2=0
LAZZZ_A]_I\ZZO
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Ly =3x+y+z—-5=0
Ly,=x+y+z—-1=0

This linear system of five equations in five unknowns has a unique solution:
(2, —1/2, —1/2). The Jacobian of the constraints is ( ? 1 } ), which has
rank 2, and so the NDCQ holds.

18.6 Substitute y = 0 into all the equations.

max (min) x+z°

subjectto x? + 2 = L
The Lagrangian is
L=x+2Z-A+2-1)

and the first order conditions are

Il

Li=1-2x=0
L.=2:—A2z=(1—-A)2z=0

Ly=x*+2-1=0.

Il

There are four solutions:

(1/2,0,+/3/2, 1)
(1/2,0,-+/3/2,1)
(1,0,0,1/2) '
(—10,0, =1/2)

(xyzA)=

A check shows that the first two correspond to local maxima with a value
of 5 /4, the third to a critical point with a value of |, and the last to a local
minimum with a value of — 1.

18.7 Substitute the constraint xz = 3 into the objective function:

max 3+ =

subjectto > + 22 = 1.
The Lagrangian is

=3+p- AP+~ 1)
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18.8

18.9

The first order conditions are
L,=z—2Ay =10
L,=y—2Az=0
Ly=1¥+2—-1=0.

The solutions are the four (y, z) pairs such that y = i]/\/i and z =
*1/ ﬁ . For a maximum, y and z must have the same sign, so the solutions

are (3v/2, 1/42,1/4/2) and (—3+/2, =1/4/2, —=1/+/2). The value of the
maximand in each case is 7/2, and NDCQ holds.

Suppose there are n variables and m constraints. The Jacobian of the con-
straints is

.
ahxy ax,
axy dx,

This matrix can have rank m only if m < n.

A simple substitution makes this much easier. Let X = x%, ¥ = ¥* and
Z = z*, The maximization problem is now

max XYZ
subjectto X+ Y +Z = ¢

together with inequality constraints X = 0, ¥ = 0 and Z = 0, which we
will ignore for the moment. This is a familiar problem. The Lagrangian is

L=XYZ-AMX+Y+Z-c%
The first order conditions are
Ly=YZ-Xx=0
Ly=XZ—-A=0
Ly=XY-A=0
Ly=X#¥+Z==0

The solution is

Pt

1l

~

]

N

Il
w] A,
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18.10

18.11

and we see that the inequality constraints are never binding. Going back to
the original problem, the solution is

x‘:y:z:

5

The value of the objective function at its maximum is (¢2/3)?, so

3
/3 = (x2 +);2 +:7-)

for all (x, y, ) in the constraint set. Ranging over all values of ,

2 2 2
2,2.001/3 o xt+y+z
(xy°z7) (‘3 :

The Lagrangian is
L:x2+y27/\(2x+y—2)+v1x+v2y.
The first order conditions are
L=2x—2A+vpy =0
L,,:2y—A+vz =0
ACx+y—=2)=0
mx =0
A= 0
vli_"(), 1‘)229, A =0
Solve by enumerating cases. Is there a solution with x = 07 If so, then

vi =2l andy = 2. Ify = 2, then v, = 0, s0 A =4 and v = §,
which is consistent with the FOCs. This is a solution. Is there a solution

with y = 0? If so, then v; = A and x = 1. [f x = |, then », = 0, so
A = 1 and v = 1, which is consistent with the FOCs. This is a solution.
¥ =y =w =w =X = 0isasolution. If neither x nor y are 0, then

vp = 1y = 0. Then x = 4/5 and so y = 2/5. This is consistent. Among
these four points the global maximum occurs at (0, 2) and the value of f
is 4.

The Lagrangian is

L=2"—x—=A(>+p*~ 1)+ vx + my.
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428 CONSTRAINED OPTIMIZATION I: FIRST ORDER CONDITIONS [18]

Notice the similarities and differences between the statement of Theorem 18,2
which treats equality constraints and the statement of Theorem 18.3 which covers
inequality constraints:

(1) Both use the same Lagrangian L and both require that the derivatives of I,
with respect to the x;’s be zero.

(2) The condition that oL /du = h(x, y) — ¢ = 0 for equality constraints may
no longer hold for inequality constraints since the constraint need not be
binding at the maximizer in the inequality constraint case. It is replaced
by two conditions:

oL
Algy) —bl =0 and — =gly) ~b=0.

The second of these two conditions is simply a repetition of the inequality
constraint itself.

Both situations require that we check a constraint qualification. However,
we need only check the constraint qualification for an inequality constraint
if that constraint is binding at the solution candidate.

There were no restrictions on the sign of the multiplier in the equality
constraint situation; however, the multiplier for inequality constraints must
be nonnegative.

For equality constraints (and for problems with no constraints), the same
first order conditions that work for maximization problems also hold for
minimization problems. However, the argument, summarized in Figure
18.4, that Vf(p) and Vg(p) point in the same direction for inequality
constraints holds only for the maximization problem. The same line of
reasoning concludes that V f(p) and V g(p) must point in opposite direc-
tions in a constrained minimization problem. We will say more about the
distinction between minimization problems and maximization problems
in Section 18.5.

Example 18.7 Consider the problem of maximizing f(x, y) = xy on the con-
straint set g(x, ¥) = x? + y* = 1. The only critical point of g occurs at the
origin — far away from the boundary of the constraint set x? + y? = 1, So, the
constraint qualification will be satisfied at any candidate for a solution. Form
the Lagrangian

L(xy A) = xy — Ax? +y* = 1),
and write out the first order conditions described in Theorem 18.3:

L dL
3—:y72)uc:0, — =x—2Ay =0,
ox dy

A +Y?-1)=0 x*+y*=<1, A=0
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: -

The first two equations yield

3
AZE};:;—y, or xZ:yz. (18)

L
If A = 0, then x = y = 0. This combination satisfies all the first order
y conditions, so it is a candidate for a solution. If A # 0, then the third equation
e hecomes x* +y?—1 = 0. Combining this with (18), we find that x*> = y* = 1/2,
1 orx = *1/+/2,y = *+1/4/2. Combining these with the equation for A in (18),

| we find the following four candidates:

1 1 1

X:+"——, y:+__’ /\-:+_:\

2 2 2

; 1 1 i
. X = = ey A:+_:
> 7 2 2

1 1 1

X=+—, y=——, A=—=

NN 2

7 TR T

We disregard the last two candidates since they involve a negative multiplier.
So, including (0, 0, 0), there are three candidates which satisfy all five first order
conditions. Plugging these three into the objective function, we find that

1 1 1 1
x=—,y=— and x=——, y= ——

V2T V2 vz V2

are the solutions of our original problem.
The two points with the negative multipliers are the solutions of the problem
of minimizing xy on the constraint set x> + y? =< 1.

One way to think of condition ¢ in Theorem 18.3 is that if A > 0, we know
the constraint will be binding and we can treat it as an equality constraint instead
of as an inequality constraint — a much simpler criterion to work with. In some
economics problems this type of analysis can give us useful information about the
phenomenon under study, as the following example illustrates.

Example 18.8 Censider once again the standard utility maximization problem of
Example 18.1. We continue to ignore the nonnegativity constraints but now do
not force the budget constraint to be binding in the statement of the problem.

We will see that the tightness of the budget constraint — the conclusion that

the consumer spends all the available income —is a consequence of a natural

monotonicity assumption on the utility function.
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For ease of notation, assume that the first &, constraints are binding at x’ and
that the last k — ky constraints are not binding. Suppose that the following
nondegenerate constraint qualification is satisfied at x".

The rank at x of the Jacobian matrix of the binding constraints

B
(?xl(x) a_»;”(x)

dgku élgku
=LIyen v Bl
ox, () ox, )

is kg — as large as it can be.
Form the Lagrangian

L(xb---:xm Al;---r Ak) = f(x) - )‘l[gl(x) - bl] - /\k[gk(x) - bf\}

Then, there exist multipliers A, ..., A, such that:

aL : aL _
(a) Eix—l(x’)\ ):(),...,é}:(x,)\)=0,
()  Algx) = o] =0, Mlgx) —be] =0,
() A =0,...,A =0,
(d) g(x)=by, ..., qx)=b.

Remark The constraint qualification in the statement of Theorem 18.4 is the
natural generalization of the constraint qualifications in Theorems 18.2 and 18.3.
This condition involves only the binding constraints since the nonbinding con-
straints should play no role in the first order conditions. Then, we treat the binding
constraints just as we did the equality constraints in Theorem 18.2, by assuming
that their Jacobian has maximal rank. We will still abbreviate this version of the
nondegenerate constraint qualifications as NDCQ.

Example 18.9 Consider the problem of maximizing f(x, y,z) = xyz on the

i constraint set defined by the inequalities
t

x+y+z=1 x=0 y=0 and zz=0O

| This is the typical example of a utility maximization problem in a three-
! dimensional commodity space. Since we need to write all our inequality con-

straints consistently — with a = — we write the three nonnegativity constraints
tas

|
|
|
|
1
|
|

|
:' —x=0, ~y=0, —z=0,




The Jacobian of the constraint functions is

1 1 1

=] 0 0

B == 0

0 0 -1
Since its columns are linearly independent, it has rank three. Sinc
solution candidate. Form the Lagrangian

LO6 Y 2 A1, Ag, Ay, Ag) = xyz — Mx+y+z-1)

= A(=x) = M(=y) = My(—2).
Because of the double minus signs in the last
We can rewrite it more aesthetically as

Lty 2 A1, Ay, Ag, Ay) = r=hi(x + y 2= 1)+ don + Azy + Mgz,

From now on, we will treat honnegativity constraints this way, by including
them in the Lagrangian as +Aix; rather than as = Ad{(—x;). We now write out the
complete set of first order conditions, according to Theorem 18.4:

(D z—i:)az—)n-i-/\g:(),
2 %=xzﬁ)\1+/\3=0,
(3) %:xy~/\1+/\4:0,
4 Mlr+y+z-1 =0 () Ax =0,
(6) Ay =0, (7) Mz =0,
&) M=o ) =0
(10) A3 =0, (11) A =0,
(12) Xxt+ty+zr=], (13) x=0,
(14) y=o (15) z=0o.

Rewrite conditions 1, 2, and 3, without minus signs, as

)LI:yz+/\2:xz+)\3zxy+/\4. (20)

I We will look at two cases: Ay =0and A; > 0.

432 CONSTRAINED OPTIMIZATION |- FIRST ORDER CONDITIONS [18]

€ at most three
of the four constraints can be binding at any one time, the NDCQ holds at any
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If Ay = 0 in equation (20), then because every variable in equation (20) is
nonnegative,

Ye=xz=xy=0 and A=A =XA=A=0. (21)

Equations (21) lead to the (infinite) set of solution candidates in which two
of the variables equal zero and the third is any number in the interval [0, 1].
In particular, the objective function equals zero for all (%, y, z) which satisfy
equations (21).

Next, look at the case A; > (. By condition4, x+y+z = 1 ;atleastone of x,
¥, z must be nonzero. Suppose for a moment that x = (). Then, using equations
(20) and the assumption that A; > 0, we see that A3 = Ay = A; > 0. But then,
conditions 6 and 7 imply that y = z = 0— a contradiction to x + y+z=1
Since the assumption that x = 0 leads to a contradiction, we conclude that
x > 0. Similar arguments show that y and z are positive too. Then, conditions
5,6, and 7 imply that Ay = A3 = Ay = 0 and equations (20) become simply

¥z = xz = xy.

It follows now that
X y - Z =

and, by using equation (20) once more, that Ay = 1/9. Since

111 1
e
f(3’3’3) 27 0

(22) is the solution of the constrained maximization problem.

As this example shows, the solution of a constrained maximization problem
usually involves breaking the first order conditions into a number of cases. It
is often easiest to start with the nonnegativity constraints or the signs of the
multipliers. In Example 18.9, we first worked with the case A = 0. Bach case
needs to be carried out until either a complete candidate for a solution is computed,
including values for the multipliers, or a contradiction to one of the first order
conditions is reached. While working with any given case, one might have to
break that case into two subcases depending on whether or not a second inequality
constraint is binding or not. In Example 18.9, while studying the case A, > 0, we
had to examine two subcases depending on the sign of x.

In economic theory, however, one rarely needs to compute the maxima or
minima of a specific problem. One is usually more interested in studying the
first order conditions which arise in a specific type of problem, since these can
lead to interesting relationships between the variables of the problem or even to
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The first order conditions are

L,
Ly

_1_2/\).‘4’1)] =0
4y =20+ 1, =0

I

AE+¥P -1 =0
vx =20
1y =10

n=0 n=0 ArA=0
The only solution to the first order conditions is
x=0 y=1 »=1 =0 A=2
so the optimum is x = O and y = 1, and the value of f is 2.
18.12 a) The problem is

max xyz+z
subjectto ¥’ +3y2+z=<6

x=0y=0z=0

The first order conditions are

b~
=
Il

-2ty =0

t-H
Il

y = X2 20y + 1 =

&
\

=xy+1-A+p3=0

AP+ +z-6)=0

V]JCZU
sz:()
mz =10

7)]20, szo, '!/3:3'-0, A =0

b) There is no solution to the first order conditions with A = 0, because
A = Oimplies xy + 1 + »3 = 0, and this equation has no nonnegative
solution. Since A > 0, the constraint must be binding at every solution

to the first order conditions.

¢) Ifx = 0, then v, = 2Xy. Since A > 0, v,y = 24y = 0 implies y = 0

and vy = 0. Thereforez = 6, vy = 0, »; = A — 1,and A = 1,
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18.13

dy If x > 0, then v, = 0 so)z = 2Xx. Since A > 0, y and z are both
positive, so ¥, and v3 are both 0. Thus four equations in four unknowns
are the first order conditions for Ly, L, and I.; and the constraint equality:

y—2Ax=0
xz—2hy =0
xp+l—A=0

2+ +z=6
Solving for A and substituting gives the equation system
—2x—2x*y+yz=0
— 2P 2 +xz2=0
L+ trz=6

¢} This equation system has only one solution that satisfies all the nonneg-
ativity constraints: x = 1,y = 1, andz = 4. Then A = 2.

The Lagrangian is
L= U(x;,xz) — A(leC; + paxy — f) + vyx; + mx.
The first order conditions include

Lx1 = ler}‘pl +1 =0
LxE;sz—l\pz‘l'Vz:O
Alpixy + paxa — n=0

IfA = 0, then Uy, + »; = O hasto have a nonnegative solution, and this is
impossible if at every (x;, x;) = 0 at least one of the U,, exceeds 0. Thus
A>0,s0px) +paxa =1

At most one nonnegativity constraint can bind because the origin cannot
solve the first order conditions (since A > 0). Thus there are at most
two binding constraints: The budget constraint and one of the inequality
constraints. If one inequality constraint binds, the budget-constraint row of
the matrix of derivatives of the binding constraints has two nonzero entries,
and the row corresponding to the inequality constraint has one 0 and one
1, so the matrix is nonsingular. If only the budget constraint binds, the
positivity of any one price guarantees that the matrix (now 1 by 2} has full
rank. In either case NDCQ holds.
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