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gure 5 shows

., Xp) denote 2 consumer’s utility functio
the upper jevel set or upper contour set =X URX) = al consi
yectors X that the consumer weakly prefers to «°. In consumer theory,
to be a convex set for every a. (The function U is then called quasiconcave.) Fi

a typical upper level set for the case of two goods.
letx = (x1,---» Xn) represent 4 commodity vector and p = (p1s--o> pn) the corres-

ponding price vector. Then p-X = P1Xt deo oA PuXnis the cost of buying X. A consumer with
m dollars to spend on the commodities has a budget set Bp,m) defined by the inequalities
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R denote the set of all x for whichx; = 0,.--»
H_ is the convex half space introduced in Example 1.
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: PROB,LEM’S FOR SECTION 2.2
1. Determine which of the following four sets are convex:

(CY)

(©)

®

(2)

2. Determine which of the following sets are convex by drawing each in the xy-plane.
®) () :xz0Y = 0}

@ (& :xz0
63) () VEESYED

at satisfy all the m inequalities

yt <2}

1 @ (Yt
© (G, y): ¥+ Y > B
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€ ((x, XY= 1}

xy)inR th

3. Let S be the set of all points (x1, -

cA apka = by

anx + aixa + -
-4 dnXn < b2

anxi + anx2 + -

- Apn¥n =

amix1 + am2X2 + -

xp, 2 0. Show that S isa convex set.

ch that x1 >0,..-»

and moreover are si




SECTION 2.3 / CONCAVE AND CONVEX FUNCTIONS |

We end this section by proving Theorems 2.3.3 and 2.3.2.

part (a)- Take two points X, ¥ inSandlet? €10, 1]
using formula (211, g0 =

(for more details see (2.6.6)):

Proof: Let us first show the implication < in
= fax+ Q- £)y). Then by

Define g(t) = fOO + tx—-Y)
S fiy+ £(x — YN — i) Using the chain rule again, we get

g = Z}:f{}(y i — Y& — DG i

i=1 j=1
a) that A, (¥) = Oforally , 1, Theorem 1.7.1(b) implies
in(i)is=0 fortin {0, 1 onvex. In particular,

) ®

imSandallr = 1,...
1. This shows that g is ¢

By the assumption in ¢

that the quadratic form
ve. B
e gy =gt -1+~ -0 <tg®H+ - Ng©) = tf®+ 0 - N (D)
B
But this shows that f is convex, since the inequality in(1)is satisfied with <.
To prove that = is valid in case (a), SUppPOSe f is convex in S. According t0 Theorem 1.7.1(b),
)y = it suffices to show that forallxin S and all Ay, <. - s Fin WE have
} and non
0= fijhih; =0 (i)
yption - =t j=t
ed the Now S is an open get,soifx € S andbh = (A1, -> hy) is an arbitrary vector, there exists a positive
comes pumber a such thatx +the S for all t with |t} < a- Let I = (—a,a)- Define the function p on I
by p() = fx+ th). According to (8), P is convex in I. Hence P = Oforallzin I. But
n n
py = Y3 fi A ki (v)
i=1 j=1
Putting ¢t = 0, we get inequality (i)
This proves the equivalence in part (a) of the theorem. The equivalence in (b) follows from (a) if
we simply replace f with -f- w
proof of Theorem 2.3.2: Define g asin the proof of Theorem 2.3.3.
) (a) If the specified conditions are satisfied, the Hessian matrix £ (x) is positive definite according
m g’ al to Theorem 1.7.1(2)- So for x # y the sum in(i)is>0 for all 7 in [0, 1]. 1t follows that g is strictly
convex. The inequality in (ii) of the proof above is then strict for ¢ in {0, 1],s0 f is strictly convex.
®

(b) Follows from (a) by replacing f with —f.

ose graphs are shown in the figure below are (presumably) con-

1. Which of the functions wh
Jstrictly convex?

vex/concave, strictly concave
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7z = h(x,¥)

=g(x,y)
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