Let $U(\mathbf{x}) = U(x_1, \dots, x_n)$ denote a consumer's utility function. If $U(\mathbf{x}^0) = a$, then the upper level set or upper contour set $\Gamma_a = \{x : U(x) \ge a\}$ consists of all commodity vectors \mathbf{x} that the consumer weakly prefers to \mathbf{x}^0 . In consumer theory, Γ_a is often assumed EXAMPLE 2 to be a convex set for every a. (The function U is then called *quasiconcave*.) Figure 5 shows

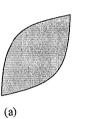
Let $\mathbf{x} = (x_1, \dots, x_n)$ represent a commodity vector and $\mathbf{p} = (p_1, \dots, p_n)$ the corresa typical upper level set for the case of two goods. ponding price vector. Then $\mathbf{p} \cdot \mathbf{x} = p_1 x_1 + \dots + p_n x_n$ is the cost of buying \mathbf{x} . A consumer with m dollars to spend on the commodities has a budget set $\mathcal{B}(\mathbf{p}, m)$ defined by the inequalities

$$\mathbf{p} \cdot \mathbf{x} = p_1 x_1 + \dots + p_n x_n \le m \quad \text{and} \quad x_1 \ge 0, \dots, x_n \ge 0$$
(4)

The budget set $\mathcal{B}(\mathbf{p}, m)$ consists of all commodity vectors that the consumer can afford. Let \mathbb{R}^n_+ denote the set of all x for which $x_1 \geq 0, \ldots, x_n \geq 0$. Then $\mathcal{B}(\mathbf{p}, m) = H_- \cap \mathbb{R}^n_+$, where H_{-} is the convex half space introduced in Example 1. It is easy to see that \mathbb{R}^{n}_{+} is a convex set. (If $\mathbf{x} \ge \mathbf{0}$ and $\mathbf{y} \ge \mathbf{0}$ and $\lambda \in [0, 1]$, then evidently $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \ge \mathbf{0}$.) Hence $\mathcal{B}(\mathbf{p}, m)$ is convex according to (3). Note that this means that if the consumer can afford either of the commodity vectors x and y, she can also afford any convex combination of these two vectors.

PROBLEMS FOR SECTION 2.2

1. Determine which of the following four sets are convex:



- 2. Determine which of the following sets are convex by drawing each in the xy-plane.
 - (a) $\{(x, y): x^2 + y^2 < 2\}$
- (b) $\{(x, y) : x \ge 0, y \ge 0\}$
- (c) $\{(x, y): x^2 + y^2 > 8\}$
- (d) $\{(x, y) : x \ge 0, y \ge 0, xy \ge 1\}$
- (e) $\{(x, y) : xy \le 1\}$
- (f) $\{(x, y) : \sqrt{x} + \sqrt{y} \le 2\}$
- 3. Let S be the set of all points (x_1, \ldots, x_n) in \mathbb{R}^n that satisfy all the m inequalities

and moreover are such that $x_1 \ge 0, \ldots, x_n \ge 0$. Show that S is a convex set.

We end this section by proving Theorems 2.3.3 and 2.3.2.

Proof: Let us first show the implication \Leftarrow in part (a). Take two points \mathbf{x} , \mathbf{y} in S and let $t \in [0, 1]$. Define $g(t) = f(\mathbf{y} + t(\mathbf{x} - \mathbf{y})) = f(t\mathbf{x} + (1 - t)\mathbf{y})$. Then by using formula (2.1.7), $g'(t) = \mathbf{y}$ $\sum_{i=1}^{n} f_i'(\mathbf{y} + t(\mathbf{x} - \mathbf{y}))(x_i - y_i).$ Using the chain rule again, we get (for more details see (2.6.6)):

$$g''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}''(\mathbf{y} + t(\mathbf{x} - \mathbf{y}))(x_i - y_i)(x_j - y_j)$$
 (i)

By the assumption in (a) that $\Delta_r(\mathbf{y}) \geq 0$ for all \mathbf{y} in S and all $r = 1, \ldots, n$, Theorem 1.7.1(b) implies that the quadratic form in (i) is ≥ 0 for t in [0, 1]. This shows that g is convex. In particular, (ii)

dratic form in (i) is
$$\geq 0$$
 for the formula $f(x) = f(x) + (1-t)f(y)$ (ii)
$$g(t) = g(t \cdot 1 + (1-t) \cdot 0) \leq tg(1) + (1-t)g(0) = tf(x) + (1-t)f(y)$$

But this shows that f is convex, since the inequality in (1) is satisfied with \leq .

To prove that \Rightarrow is valid in case (a), suppose f is convex in S. According to Theorem 1.7.1(b), it suffices to show that for all x in S and all h_1, \ldots, h_n we have

$$Q = \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}''(\mathbf{x}) h_i h_j \ge 0$$
 (iii)

Now S is an open set, so if $\mathbf{x} \in S$ and $\mathbf{h} = (h_1, \dots, h_n)$ is an arbitrary vector, there exists a positive number a such that $\mathbf{x} + t\mathbf{h} \in S$ for all t with |t| < a. Let I = (-a, a). Define the function p on I by $p(t) = f(\mathbf{x} + t\mathbf{h})$. According to (8), p is convex in I. Hence $p''(t) \ge 0$ for all t in I. But

$$p''(t) = \sum_{i=1}^{n} \sum_{j=1}^{n} f_{ij}''(\mathbf{x} + t\mathbf{h})h_i h_j$$
 (iv)

This proves the equivalence in part (a) of the theorem. The equivalence in (b) follows from (a) if Putting t = 0, we get inequality (iii). we simply replace f with -f.

Proof of Theorem 2.3.2: Define g as in the proof of Theorem 2.3.3.

(a) If the specified conditions are satisfied, the Hessian matrix $\mathbf{f}''(\mathbf{x})$ is positive definite according to Theorem 1.7.1(a). So for $\mathbf{x} \neq \mathbf{y}$ the sum in (i) is > 0 for all t in [0, 1]. It follows that g is strictly convex. The inequality in (ii) of the proof above is then strict for t in [0, 1], so f is strictly convex.

(b) Follows from (a) by replacing f with -f.

u ïУ

ıе.

ng

and

iption

ed the comes

(8)

n g is also

1. Here the em 2.3.5(b).

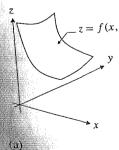
thus conve

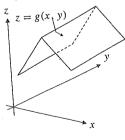
3 is S, because

e by Example y^2 and F(u)x, y) is concine ncave. According

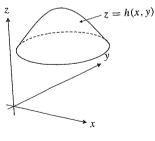
(x, y) + h(x)

PROBLEMS FOR SEGTIONS 2.3 1. Which of the functions whose graphs are shown in the figure below are (presumably) convex/concave, strictly concave/strictly convex?





(b)



(c)