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Problems

1. Find all extremal points for the function f (x,y,z) = x4 + y4 + z4 + x2 + y2 + z2.

2. Show that the function f (x,y) = x3 + y3−3x−2y defined on the convex set S =
{(x,y) : x > 0, y > 0} is (strictly) convex, and find its global minimum.

3. A company produces two output goods, denoted by A and B. The cost per day is

C(x,y) = 0.04x2−0.01xy+0.01y2 +4x+2y+500

when x units of A and y units of B are produced (x > 0, y > 0). The firm sells all it
produces at prices 13 per unit of A and 8 per unit of B. Find the profit function π

and the values of x and y that maximizes profit.

4. The function f (x,y,z) = x2 + 2xy+ y2 + z3 is defined on S = {(x,y,z) : z > 0}.
Show that S is a convex set. Find the stationary points of f and the Hessian matrix.
Is f convex or concave? Does f have a global extremal point?

5. Show that the function f (x,y,z) = x4 + y4 + z4 + x2− xy+ y2 + yz+ z2 is convex.

6. Find all local extremal points for the function f (x,y,z) = −2x4 + 2yz− y2 + 8x
and classify their type.

7. The function f (x,y,z) = x2 +y2 +3z2−xy+2xz+yz defined on R3 has only one
stationary point. Show that it is a local minimum.

8. Find all local extremal points for the function f (x,y) = x3−3xy+y3 and classify
their type.

9. The function f (x,y,z) = x3 + 3xy+ 3xz+ y3 + 3yz+ z3. Find all local extremal
points for f and classify their type.

10. Find the solution (x∗(a),y∗(a),z∗(a)) to the Lagrange problem

max f (x,y,z) = 100− x2− y2− z2 subject to x+2y+ z = a

and let λ (a) be the corresponding Lagrange multiplier. Show that

λ (a) =
∂ f ∗(a)

∂a

where f ∗(a) = f (x∗(a),y∗(a),z∗(a),λ (a)) is the optimal value function.

11. Solve the Lagrange problem

max f (x,y,z) = x+4y+ z subject to

{
x2 + y2 + z2 = 216
x+2y+3z = 0

Use the Lagrange multiplier to estimate the new maximum value when the con-
straints are changed to x2 + y2 + z2 = 215 and x+2y+3z = 0.1.
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12. Final Exam in GRA6035 10/12/2010, Problem 1
We consider the function f (x,y,z) = x2ex + yz− z3.

a) Find all stationary points of f .
b) Compute the Hessian matrix of f . Classify the stationary points of f as local

maxima, local minima or saddle points.

13. Mock Final Exam in GRA6035 12/2010, Problem 2

a) Find all stationary points of f (x,y,z) = exy+yz−xz.
b) The function g(x,y,z) = eax+by+cz is defined on R3. Determine the values of the

parameters a,b,c such that g is convex. Is it concave for any values of a,b,c?

14. Final Exam in GRA6035 30/05/2011, Problem 1
We consider the function f (x,y,z,w) = x5 + xy2− zw.

a) Find all stationary points of f .
b) Compute the Hessian matrix of f . Classify the stationary points of f as local

maxima, local minima or saddle points.
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Solutions

1 The partial derivatives of f (x,y,z) = x4 + y4 + z4 + x2 + y2 + z2 are

f ′x = 4x3 +2x, f ′y = 4y3 +2y, f ′z = 4z3 +2z

The stationary points are given by 2x(2x2+1) = 2y(2y2+1) = 2z(2z2+1) = 0, and
this means that the unique stationary point is (x,y,z) = (0,0,0). The Hessian of f is

H( f ) =

12x2 +2 0 0
0 12y2 +2 0
0 0 12z2 +2


We see that H( f ) is positive definite, and therefore f is convex and (0,0,0) is a
global minimum point.

2 The partial derivatives of f (x,y) = x3 + y3−3x−2y are

f ′x = 3x2−3, f ′y = 3y2−2

The stationary points are given by 3x2− 3 = 3y2− 2 = 0, and this means that the
unique stationary point in S is (x,y,z) = (1,

√
2/3). The Hessian of f is

H( f ) =
(

6x 0
0 6y

)
We see that H( f ) is positive definite since D1 = 6x > 0 and D2 = 36xy > 0, and
therefore f is convex and (1,

√
2/3) is a global minimum point.

3 The profit function π(x,y) is defined on {(x,y) : x > 0, y > 0}, and is given by

π(x,y) = 13x+8y−C(x,y) =−0.04x2 +0.01xy−0.01y2 +9x+6y−500

The Hessian of π is given by

H(π) =

(
−0.08 0.01
0.01 −0.02

)
and it is negative definite since D1 = −0.08 < 0 and D2 = 0.016− 0.0001 =
0.0159 > 0, and therefore π is concave. The stationary point of π is given by

π
′
x =−0.08x+0.01y+9 = 0, π

′
y = 0.01x−0.02y+6 = 0

This gives (x,y) = (160,380), which is the unique maximum point.

4 To prove that S is a convex set, pick any points P = (x,y,z) and Q = (x′,y′,z′) in
S. By definition, z > 0 and z′ > 0, which implies that all points on the line segment
[P,Q] have positive z-coordinate as well. This means that [P,Q] is contained in S,
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and therefore S is convex. The partial derivatives of f are

f ′x = 2x+2y, f ′y = 2x+2y, f ′z = 3z2

Since z > 0, there are no stationary points in S. The Hessian matrix of f is

H( f ) =

2 2 0
2 2 0
0 0 6z


The principal minors are ∆1 = 2,2,6z > 0, ∆2 = 0,12z,12z > 0 and ∆3 = 0, so H( f )
is positive semidefinite and f is convex (but not strictly convex) on S. Since f has
no stationary points and S is open (so there are no boundary points), f does not have
global extremal points.

5 The partial derivatives of f (x,y,z) = x4 + y4 + z4 + x2− xy+ y2 + yz+ z2 are

f ′x = 4x3 +2x− y, f ′y = 4y3− x+2y+ z, f ′z = 4z3 + y+2z

and the Hessian matrix is

H( f ) =

12x2 +2 −1 0
−1 12y2 +2 1
0 1 12z2 +2


Since D1 = 12x2+2 > 0, D2 = (12x2+2)(12y2+2)−1 = 144x2y2+24x2+24y2+
3 > 0 and D3 = −1(12x2 + 2)+ (12z2 + 2)D2 = 1728x2y2zz + 288(x2y2 + x2z2 +
y2z2)+36x2 +48y2 +36z2 +4 > 0, we see that f is convex.

6 The partial derivatives of the function f (x,y,z) =−2x4 +2yz− y2 +8x is

f ′x =−8x3 +8, f ′y = 2z−2y, f ′z = 2y

Hence the stationary points are given by y = 0,z = 0,x = 1 or (x,y,z) = (1,0,0).
The Hessian matrix of f is

H( f ) =

−24x2 0 0
0 −2 2
0 2 0

 ⇒ H( f )(1,0,0) =

−24 0 0
0 −2 2
0 2 0


Since D1 =−24 < 0, D2 = 48 > 0, but D3 = 96 > 0, we see that the stationary point
(1,0,0) is a saddle point.

7 The Hessian matrix of the function f (x,y,z) = x2 + y2 +3z2− xy+2xz+ yz is

H( f ) =

 2 −1 2
−1 2 1
2 1 6


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Since D1 = 2 > 0, D2 = 3 > 0, D3 = 2(−5)−1(4)+6D2 = 4 > 0, we see that H( f )
is positive definite, and that the unique stationary point is a local minimum point.

8 The partial derivatives of the function f (x,y) = x3−3xy+ y3 are

f ′x = 3x2−3y, f ′y =−3x+3y2

The stationary points are therefore given by 3x2−3y = 0 or y = x2, and−3x+3y2 =
0 or y2 = x4 = x. This gives x = 0 or x3 = 1, that is, x = 1. The stationary points are
(x,y) = (0,0),(1,1). The Hessian matrix of f is

H( f ) =
(

6x −3
−3 9y

)
⇒ H( f )(0,0) =

(
0 −3
−3 0

)
, H( f )(1,1) =

(
6 −3
−3 9

)
In the first case, D1 = 0; D2 =−9 < 0 so (0,0) is a saddle point. In the second case,
D1 = 6, D2 = 45 > 0, so (1,1) is a local minimum point.

9 The partial derivatives of the function f (x,y,z) = x3 + 3xy+ 3xz+ y3 + 3yz+ z3

are
f ′x = 3x2 +3y+3z, f ′y = 3x+3y2 +3z, f ′z = 3x+3y+3z2

The stationary points are given by x2 + y+ z = 0, x+ y2 + z = 0 and x+ y+ z2 = 0.
The first equation gives z=−x2−y, and the second becomes x+y2+(−x2−y) = 0,
or x−y= x2−y2 =(x−y)(x+y). This implies that x−y= 0 or that x+y= 1. We see
that x+y = 1 implies that 1+ z2 = 0 from the third equation, and this is impossible,
and we infer that x−y = 0, or x = y. Then z =−x2−x from the computation above,
and the last equation gives

x+ y+ z2 = 2x+(−x2− x)2 = x4 +2x3 + x2 +2x = (x+2)(x3 + x) = 0

Hence x = 0, x = −2 or x2 + 1 = 0. The last equation has not solutions, se we get
two stationary points (x,y,z) = (0,0,0),(−2,−2,−2). The Hessian matrix of f at
(0,0,0) is

H( f ) =

6x 3 3
3 6y 3
3 3 6z

 ⇒ H( f )(0,0,0) =

0 3 3
3 0 3
3 3 0


In this case, D1 = 0; D2 = −9 < 0, so (0,0,0) is a saddle point. At (−2,−2,−2),
the Hessian is

H( f ) =

6x 3 3
3 6y 3
3 3 6z

 ⇒ H( f )(−2,−2,−2) =

−12 3 3
3 −12 3
3 3 −12


In this case, D1 = −12, D2 = 135 > 0, D3 = −50 < 0, so (−2,−2,−2) is a local
maximum point.
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10 We consider the Lagrangian L (x,y,z,λ ) = 100− x2− y2− z2−λ (x+2y+ z),
and solve the first order conditions

L ′
x =−2x−λ = 0

L ′
y =−2y−λ ·2 = 0

L ′
z =−2z−λ = 0

together with x + 2y + z = a. We get 2x = −λ , 2y = −2λ , 2z = −λ and (after
multiplying the constraint by 2)

−λ −4λ −λ = 2a ⇒ λ =−a/3

The unique solution of the equations is (x,y,z;λ ) = (a/6,a/3,a/6;−a/3). Since
L (x,y,z;−a/3) is a concave function in (x,y,z), we have that this solution solves
the maximum problem. The optimal value function

f ∗(a) = f (a/6,a/3,a/6) = 100− a2

36
− a2

9
− a2

36
= 100− a2

6

We see that the derivative of the optimal value function is −2a/6 =−a/3 = λ (a).

11 We consider the Lagrangian

L (x,y,z,λ1,λ2) = x+4y+ z−λ1(x2 + y2 + z2)−λ2(x+2y+3z)

and solve the first order conditions

L ′
x = 1−λ1 ·2x−λ2 = 0

L ′
y = 4−λ1 ·2y−λ2 ·2 = 0

L ′
z = 1−λ1 ·2z−λ2 ·3 = 0

together with x2+y2+z2 = 216 and x+2y+3z = 0. From the first order conditions,
we get

2xλ1 = 1−λ2, 2yλ1 = 4−2λ2, 2zλ1 = 1−3λ2

We see from these equations that we cannot have λ1 = 0, and multiply the last
constraint with 2λ1. We get

2λ1(x+2y+3z) = 0 ⇒ (1−λ2)+2(4−2λ2)+3(1−3λ2) = 0

This gives 12−14λ2 = 0, or λ2 = 12/14 = 6/7. We use this and solve for x,y,z, and
get

x =
1

14λ1
, y =

8
7λ1

, z =− 11
14λ1

Then we substitute this in the first constraint, and get
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1

14λ1

)2

(1+162 +(−11)2) = 216 ⇒ 216 ·142
λ

2
1 = 378

This implies that λ1 = ±
√

7
28 , and we have two solutions to the first order equations

and constraints. Moreover, we see that L (x,y,z,±
√

7
28 ,

6
7 ) is a concave function in

(x,y,z) when λ1 > 0, and convex when λ1 < 0. Therefore, the solution

(x∗,y∗,z∗) = (
2
7

√
7,

32
7

√
7,−22

7

√
7)

corresponding to λ1 =
√

7
28 solves the maximum problem, and the maximum value is

f (x∗,y∗,z∗) = x∗+4y∗+ z∗ =
2+128−22

7

√
7 =

108
7

√
7' 40.820

When b1 = 216 is changed to 215 and b2 = 0 is changed to 0.1, the approximate
change in the the maximum value is given by

λ1(215−216)+λ2(0.1−0) = (−1)

√
7

28
+(0.1)

6
7
'−0.009

The estimate for the new maximum value is therefore ' 40.811.

12 Final Exam in GRA6035 10/12/2010, Problem 1

a) We compute the partial derivatives f ′x = (x2 +2x)ex, f ′y = z and f ′z = y−3z2. The
stationary points are given by the equations

(x2 +2x)ex = 0, z = 0, y−3z2 = 0

and this gives x = 0 or x = −2 from the first equation and y = 0 and z = 0 from
the last two. The stationary points are therefore (x,y,z) = (0,0,0),(−2,0,0).

b) We compute the second order partial derivatives of f and form the Hessian matrix

f ′′ =

(x2 +4x+2)ex 0 0
0 0 1
0 1 −6z


We see that the second order principal minor obtained from the last two rows and
columns is ∣∣∣∣0 1

1 −6z

∣∣∣∣=−1 < 0

hence the Hessian is indefinite in all stationary points. Therefore, both stationary
points are saddle points.

13 Mock Final Exam in GRA6035 12/2010, Problem 2
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a) We write f (x,y,z) = eu with u = xy+ yz− xz, and compute

f ′x = eu(y− z), f ′y = eu(x+ z), f ′z = eu(y− x)

The stationary points of f are therefore given by

y− z = 0, x+ z = 0, y− x = 0

which gives (x,y,z) = (0,0,0). This is the unique stationary points of f .
b) We write f (x,y,z) = eu with u = ax+by+ cz, and compute that

g′x = eu ·a, g′y = eu ·b, g′z = eu · c

and this gives Hessian matrix

H(g) =

a2eu abeu aceu

abeu b2eu bceu

aceu bceu c2eu

= eu

a2 ab ac
ab b2 bc
ac bc c2


This gives principal minors ∆1 = eua2,eub2,euc2 ≥ 0, ∆2 = 0,0,0 and ∆3 = 0.
Hence g is convex for all values of a,b,c, and g is concave if and only if a = b =
c = 0.

14 Final Exam in GRA6035 30/05/2011, Problem 1

a) We compute the partial derivatives f ′x = 5x4+y2, f ′y = 2xy, f ′z =−w and f ′w =−z.
The stationary points are given by

5x4 + y2 = 0, 2xy = 0, −w = 0, −z = 0

and this gives z = w = 0 from the last two equations, and x = y = 0 from the first
two. The stationary points are therefore (x,y,z,w) = (0,0,0,0).

b) We compute the second order partial derivatives of f and form the Hessian matrix

f ′′ =


20x3 2y 0 0
2y 2x 0 0
0 0 0 −1
0 0 −1 0


We see that the second order principal minor obtained from the last two rows and
columns is ∣∣∣∣ 0 −1

−1 0

∣∣∣∣=−1 < 0

hence the Hessian is indefinite. Therefore, the stationary point is a saddle point.


