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Problems

1. Solve the Lagrange problem

max f (x,y,z) = ex + y+ z subject to

{
x2 + y2 + z2 = 1
x+ y+ z = 1

What is the maximum value?

2. Consider the optimization problem max f (x,y;r), where r is a parameter and f is
the function given by

f (x,y;r) =−x2− xy−2y2 +2rx+2ry

Find the functions x∗(r) and y∗(r) such that x∗(r) = (x∗(r),y∗(r)) solves the opti-
mization problem, and verify the Envelope Theorem.

3. Consider the optimization problem max f (x,y;r,s), where r,s are parameters and
f is the function given by

f (x,y;r,s) = r2x+3s2y− x2−8y2

Find the functions x∗(r,s) and y∗(r,s) such that x∗(r,s) = (x∗(r,s),y∗(r,s)) solves
the optimization problem, and verify the Envelope Theorem.

4. Consider the constrained optimization problem with parameter m≥ 4:

maxU(x,y) =
1
2

ln(1+ x)+
1
4

ln(1+ y) subject to 2x+3y = m

a) Solve the optimization problem
b) Show that U∗(m), the optimal value function of the optimization problem, satis-

fies ∂U∗(m)/∂m = λ , where λ is the Lagrange multiplier.

5. Consider the constrained optimization problem

maxx2y2z2 subject to x2 + y2 + z2 = 1

Find all solutions to the Lagrange conditions, and use the Bordered Hessian to deter-
mine which of the solutions are local maxima. What is the solution to the contrained
optimization problem?

6. Find all solutions to the Lagrange conditions in the Lagrange problem

maxxyz subject to

{
x2 + y2 = 1
x+ z = 1

Show that the set of admissible points (the set of points satisfying the constraints) is
bounded, and use this to solve the optimization problem.
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Solutions

1 The Lagrangian is L (x,y,z,λ ) = ex+y+z−λ1(x2+y2+z2)−λ2(x+y+z), and
we solve the first order conditions

L ′
x = ex−λ1 ·2x−λ2 = 0

L ′
y = 1−λ1 ·2y−λ2 = 0

L ′
z = 1−λ1 ·2z−λ2 = 0

together with the contraints x2 + y2 + z2 = 1 and x+ y+ z = 1. From the last two
first order conditions, we get

λ2 = 1−2yλ1 = 1−2zλ1

This means that either λ1 = 0 or y = z. We first consider the case with λ1 = 0, which
implies that λ2 = 1 and that x = 0 from the first of the first order conditions. The
constraints give

y+ z = 1, y2 + z2 = 1

since x = 0, and inserting y = 1− z in the second equation gives (1− z)2 + z2 = 1 or
2z2−2z = 0. This gives z = 0 or z = 1. We therefore find two solutions with λ1 = 0:

(x,y,z;λ1,λ2) = (0,1,0;0,1), (0,0,1;0,1)

Both points have f (x,y,z) = e0+1 = 2. Secondly, we consider the case with λ1 6= 0,
so that y = z. Then the constraints are given by

x+2y = 1, x2 +2y2 = 1

Inserting x= 1−2y in the second equation gives (1−2y)2+2y2 = 1 or 6y2−4y= 0.
This gives y = 0 or y = 2/3. For y = z = 0, we get x = 1, λ2 = 1 and e− 2λ1 = 1,
which gives the solution

(x,y,z;λ1,λ2) = (1,0,0;
e−1

2
,1)

with f (x,y,z) = e1 = e' 2.72. For y = z = 2/3, we get x =−1/3, 1−4λ1/3 = λ2
and e−1/3 + 2λ1/3 = λ2. We solve the last two equations for λ1,λ2 and find the
solution

(x,y,z;λ1,λ2) = (−1
3
,

2
3
,

2
3

;
1− e−1/3

2
,

1+2e−1/3

3
)

with f (x,y,z) = e−1/3 +4/3' 2.05. The point (x∗,y∗,z∗) = (1,0,0) is the best can-
didate for max. Since the Lagrangian corresponding to this point is not concave, we
argue by elimination. First, the problem must have a solution by the Extreme Value
Theorem, since the set of admissible points (the constrained set) is bounded. In fact,



4

since one of the constraints is x2 +y2 + z2 = 1, we have that −1≤ x,y,z≤ 1. So the
maximum must be one of the points satisfying the Lagrange conditions (that is, one
of the points we found above), or an admissible point that does not satisfy NDCQ.
In this case, the NDCQ condition is given by

rk
(

2x 2y 2z
1 1 1

)
= 2

For a point (x,y,z) not to satisfy NDCQ, the rank must be less than two, and this
means that all minors of order two must be zero:

2x−2y = 0, 2x−2z = 0, 2y−2z = 0

The only solution is that x = y = z. Since the point must be admissible (that is,
satisfy the constraints), we must have x = y = z = 1/3 since x+ y+ z = 1, and then
x2 + y2 + z2 = 3(1/3)2 = 3/9 6= 1. So there are no admissible points that do not
satisfy NDCQ. We conclude, by elimination, that the point (x∗,y∗,z∗) = (1,0,0) is
the maximum point, and the maximum value is f ∗ = f (x∗,y∗,z∗) = e.

2 The stationary points are given by f ′x =−2x−y+2r = 0, f ′y =−x−4y+2r = 0.
The equations are linear, and there is a unique solution:(

2 1
1 4

)(
x
y

)
=

(
2r
2r

)
⇒

(
x
y

)
=

1
7

(
4 −1
−1 2

)(
2r
2r

)
=

(
6r/7
2r/7

)
The function f is concave, since the Hessian of f is given by

f ′′ =
(
−2 −1
−1 −4

)
with D1 = −2 and D2 = 7. The stationary point x∗(r) = 6r/7 and y∗(r) = 2r/7 is
therefore the unique maximum of f . The optimal value function is given by

f ∗(r) =−(6r/7)2− (6r/7)(2r/7)−2(2r/7)2 +2r(6r/7)+2r(2r/7) =
8
7

r2

The Envelope Theorem states that

d
dr

f ∗(r) =
∂ f
∂ r

(x = x∗(r),y = y∗(r)) = 2x∗(r)+2y∗(r) =
16
7

r

and we see that this fits with the optimal value function computed above.

3 The stationary points are given by f ′x = r2− 2x = 0, f ′y = 3s2− 16y = 0. The
unique stationary point is therefore given by x = r2/2 and y = 3s2/16. The function
f is clearly concave, so x∗(r,s) = r2/2 and y∗(r,s) = 3s2/16 is the unique maximum
of f . The optimal value function is given by
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f ∗(r,s) = r2(r2/2)+3s2(3s2/16)− (r2/2)2−8(3s2/16)2 =
1
4

r4 +
9

32
s4

The Envelope Theorem states that

∂

∂ r
f ∗(r,s) =

∂ f
∂ r

(x = x∗(r,s),y = y∗(r,s)) = 2rx∗(r,s) = r3

and that

∂

∂ s
f ∗(r,s) =

∂ f
∂ s

(x = x∗(r,s),y = y∗(r,s)) = 6sy∗(r,s) =
9
8

s3

We see that both results fit with the optimal value function computed above.

4 The Lagrangian is L (x,y,z,λ ) = 1
2 ln(1+ x)+ 1

4 ln(1+ y)−λ (2x+3y), and we
solve the first order conditions

L ′
x =

1
2(x+1)

−λ ·2 = 0

L ′
y =

1
4(y+1)

−λ ·3 = 0

together with the contraints 2x+ 3y = m. We solve the first order conditions for x
and y, and find

x =
1

4λ
−1, y =

1
12λ
−1

The constraint 2x+3y = m gives the equation

2(
1

4λ
−1)+3(

1
12λ
−1) = m ⇒ 3

4λ
= (m+5)

This gives the solution

λ
∗(m) =

3
4(m+5)

, x∗(m) =
m+5

3
−1 =

m+2
3

, y∗(m) =
m+5

9
−1 =

m−4
9

This is the maximum, since the Hessian of L (x,y;λ ∗(m)) is(
− 1

2(x+1)2 0
0 − 1

4(y+1)2

)

and therefore negative semidefinite for all (x,y) in the domain of definition of U
(U is defined for all points (x,y) such that x > −1 and y > −1). The optimal value
function U∗(m) is given by

U∗(m) =
1
2

ln(x∗(m)+1)+
1
4

ln(y∗(m)+1) =
1
2

ln(
m+5

3
)+

1
4

ln(
m+3

9
)

We see that this can be simplified to
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U∗(m) = ln

((
m+5

3

)1/2

·
(

m+5
9

)1/4
)

= ln

(
(m+5)3/4

3

)

The derivative of the optimal value function is

d
dm

U∗(m) =
3

(m+5)3/4 ·
3
4
(m+5)−1/4

3
=

3
4(m+5)

= λ
∗(m)

5 The Lagrangian is L (x,y,z,λ ) = x2y2z2−λ (x2 + y2 + z2), and we solve the first
order conditions

L ′
x = 2xy2z2−λ ·2x = 0

L ′
y = 2x2yz2−λ ·2y = 0

L ′
z = 2x2y2z−λ ·2z = 0

together with the contraint x2+y2+z2 = 1. The first order conditions can be reduced
to

x = 0 or y2z2 = λ

y = 0 or x2z2 = λ

z = 0 or x2y2 = λ

If x = 0 or y = 0 or z = 0, then λ = 0, and we obtain the solutions

(x,y,0) with x2 + y2 = 1, (x,0,z) with x2 + z2 = 1, (0,y,z) with y2 + z2 = 1

which all satisfy f = 0. These points are clearly local minima, since x2y2z2 ≥ 0. If
x 6= 0,y 6= 0,z 6= 0, then we have

x2y2 = x2z2 = y2z2 = λ

and this implies that x2 = y2 = z2 = 1/3. The solutions are therefore the eight points

(x,y,z) = (±
√

3/3,±
√

3/3,±
√

3/3)

with f = 1/27 and λ = 1/9. The Bordered Hessian matrix at one of the solutions
(x∗,y∗,z∗;λ ∗) = (

√
3/3,±

√
3/3,±

√
3/3;1/3) is given by

B=


0 2x 2y 2z
2x 2y2z2−2λ 4xyz2 4xy2z
2y 4xyz2 2x2z2−2λ 4x2yz
2z 4xy2z 4x2yz 2x2y2−2λ

=


0 2x∗ 2y∗ 2z∗

2x∗ 0 4/3x∗y∗ 4/3x∗z∗

2y∗ 4/3x∗y∗ 0 4/3y∗z∗

2z∗ 4/3x∗z∗ 4/3y∗z∗ 0


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We need to compute the n−m = 3−1 = 2 last leading principal minors, that is D3
and D4. We have

D3 =
32
27

, D4 =−
64
81

Since the sign is alternating and the last sign is negative, and therefore equal to the
sign of (−1)n = (−1)3 =−1, it follows that all eight points are local maxima. Since
the set given by x2+y2+z2 = 1 is bounded and NDCQ is satisfied for all admissible
points, it follows that these eight points are maxima, and therefore solutions to the
Lagrange problem.

6 The Lagrangian is L (x,y,z,λ ) = xyz−λ1(x2 + y2)−λ2(x+ z), and we solve the
first order conditions

L ′
x = yz−λ1 ·2x−λ2 = 0

L ′
y = xz−λ1 ·2y = 0

L ′
z = xy−λ2 = 0

together with the contraints x2+y2 = 1 and x+z= 1. We first consider the case when
y = 0. Then λ2 = 0 and xz = xλ1 = 0 by the first order conditions. But x =±1 6= 0
by the first constraint, so z = λ1 = 0. Finally, x = 1 by the second constraint, and we
find the solution

(x,y,z;λ1,λ2) = (1,0,0;0,0)

with f = 0. We then consider the case y 6= 0. Then we have

λ1 =
xz
2y

, λ2 = xy

by the last two first order conditions, and the first of the first order conditions give

yz− xz
2y
·2x− xy = 0 ⇒ y2z− x2z− xy2 = 0

From the constraints, we have y2 = 1−x2 and z= 1−x. Inserting this in the equation
above, we get

(1− x2)(1− x)− x2(1− x)− x(1− x2) = 0

We see that (1− x) is a factor in the left hand side, and we can therefore write the
equation as

(1− x)(1− x2− x2− x(1+ x)) = (1− x)(−3x2− x+1) = 0

and the solutions are x = 1 and x =−1/6±
√

13/6. The first solution, x = 1, gives
y = 0, which contradicts y 6= 0. We therefore get two solutions to the Lagrange
conditions in the case y 6= 0:
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x =−1
6
−
√

13
6

y =±

√
11
18
−
√

13
18

z =
7
6
+

√
13
6

x =−1
6
+

√
13
6

y =±

√
11
18

+

√
13

18
z =

7
6
−
√

13
6

)

Using approximations for (x,y,z), we see that the highest value of f is obtained at
the point

x=−1
6
−
√

13
6
'−0.768, y=−

√
11
18
−
√

13
18
'−0.641, z=

7
6
+

√
13
6
' 1.768

with f ' 0.87. Since L (x,y,z;λ ∗1 ,λ
∗
2 ) is not concave, we try to argue by elimina-

tion: First, the Lagrange problem has a solution since the set of admissible points
is bounded. In fact, since x2 + y2 = 1, we have that −1 ≤ x,y ≤ 1, and the second
constraint x+ z = 1 then means that 0≤ z≤ 2. The NDCQ condition is in this case

rk
(

2x 2y 0
1 0 1

)
= 2

For a point (x,y,z) not to satisfy NDCQ, the rank must be less than two, and this
means that all minors of order two must be zero:

−2y = 0, 2x = 0, 2y = 0

The only solution is that x = y = 0. Since the point must be admissible (that is,
satisfy the constraints), we must have x2 + y2 = 1. But this is not the case, so there
are no admissible points that do not satisfy NDCQ. We conclude, by elimination,
that the point (x∗,y∗,z∗)' (−0.768,−0.641,1.768) is the maximum point, and the
maximum value is f ∗ = f (x∗,y∗,z∗)' 0.87.


