Review:
(1) Matrix methods
(2) Unconstrained optimization

Exam Problems
Final $12 / 2012$ Prob len I

(1) Matrix methods

Basie techniques a) Gaussian elimination
b) Determinants
i) Linear independence of vecters m-vecters $\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v_{n}} \leadsto A=\left(\begin{array}{c:c:c} & v_{1} & v_{2} \\ \hdashline & \ldots & \underline{v_{n}}\end{array}\right)$
Are $\left\{v_{1}, v_{2}, \ldots v_{n}\right\}$ Are $\left\{\underline{v_{1}}, \underline{v_{2}}, \ldots, \underline{v}_{n}\right\}$ linearly independent?

Fact I:
If $m=n$ (A square matrix), then $\left\{\underline{v_{1}}, \underline{v}_{2}, \ldots, \underline{v}_{n}\right\}$ are linearly independent $\Longleftrightarrow|A| \neq 0$

Fact 2:
The vectors $\left\{\underline{v}_{1}, \ldots, v_{n}\right\}$ are linearly independent if and only if $A \cdot \underline{x}=0$ only have the trivial solution $\underline{x}=0$.

- En: $A=\left(\begin{array}{ccc}1 & t & -2 \\ 2 & 4 & -t \\ -t & -4 & -4\end{array}\right) \quad t$ is a parameter

$$
v_{1}=\left(\begin{array}{c}
1 \\
2 \\
-t
\end{array}\right) \quad v_{2}=\left(\begin{array}{c}
t \\
4 \\
-4
\end{array}\right) \quad v_{3}=\left(\begin{array}{c}
-2 \\
-t \\
-4
\end{array}\right)
$$

Using determinants:

$$
\begin{aligned}
& \left|\begin{array}{ccc}
1 & t & -2 \\
2 & 4 & -t \\
-t & -4 & -4
\end{array}\right|=1 \cdot(-16 \div 4 t)-2(-4 t-8)-t\left(-t^{2}+8\right) \\
& \quad=-16-4 t+8 t+16+t^{3}-8 t=t^{3}-4 t
\end{aligned}
$$

$\left\{\underline{v_{1}}, \underline{v_{2}}, \underline{v} \leq\right\}$ iriearly independent $\Leftrightarrow|A|=t^{3}-4 t \neq 0$
-11- dependent

$$
\begin{gathered}
|A|=t^{3}-4 t=0 \\
t\left(t^{2}-4\right)=0 \\
t=0 \quad t= \pm 2
\end{gathered}
$$

$\left\{\underline{v_{1}}, \underline{v_{2}}, \underline{v}_{3}\right\}$ in. independent $\Leftrightarrow t \neq 0,2,-2$

What if $\left.t=-2: \quad|A|=0, \quad \mid v_{1}, v_{2}, v_{3}\right\} \quad$ in. dependent

$$
\left.\left.A=\left(\begin{array}{ccc}
1 & -2 & -2 \\
2 & 4 & 2 \\
2 & -4 & -4
\end{array}\right)\right]^{-2}\right]_{-2} \rightarrow\left(\begin{array}{ccc}
1 & -2 & -2 \\
0 & 8 & 6 \\
0 & 0 & 0
\end{array}\right)
$$

$A \cdot \underline{x}=0$ has one free variable (z)
$\rightarrow\left\{\underline{v}_{1}, v_{2}\right\}$ are linearly independent (pivot positions in col. 1 and 2)
$\rightarrow V_{3}$ is a linear combination of $\left\{\underline{v}_{1}, \underline{v_{2}}\right\}$
(no pivot position in col 3)
ii) Rank

A $m \times n$-matrix: $\quad r k(A)=$ max number of lineally independut colum vectors in A

Fact I:
If $m=n$, the $\begin{cases}\text { re } A=n \Leftrightarrow & |A| \neq 0 \\ r k A<n \Leftrightarrow D & |A|=0\end{cases}$
Fact 2:
rh $(A)=$ \#pivot positions in A
Ex: $\quad A=\left(\begin{array}{ccc}1 & t & -2 \\ 2 & 4 & -t \\ -t & -4 & -4\end{array}\right)$

$$
|A|=t^{3}-4 t \Rightarrow\left\{\begin{array}{l}
|A|=0 \Leftrightarrow t=0,2,-2 \rightarrow r k A<3 \\
|A| \neq 0 \Leftrightarrow b+\neq 0,2,-2 \rightarrow r k A=3
\end{array}\right.
$$

$$
\begin{aligned}
& \text { If } t=-2: \quad A=\left(\begin{array}{ccc}
1 & -2 & -2 \\
2 & 4 & 2 \\
2 & -4 & -4
\end{array}\right) \rightarrow\left(\begin{array}{cc}
1 & -2 \\
0 & -2 \\
0 & 8 \\
0 & 6 \\
0 & 0
\end{array}\right) \quad \begin{array}{l}
\text { rn } A=2 \\
\text { when } t=-2
\end{array} \\
& \left|\begin{array}{cc}
1 & -2 \\
2 & 4
\end{array}\right|=4+4=8 \neq 0 \quad \text { pk } A=2
\end{aligned}
$$

2 -minor whet $t=-2$
rh $A=$ maximal order of a non-zero minor of A
iii) Eigenvalues and eigervecters

A $n \times n$-matrix: If $A_{\underline{x}}=\lambda \underline{x}$ with $\underline{x} \neq 0$ then

$$
\left\{\begin{array}{l}
\text { the number } \lambda \text { is a eigenvalue } \\
\text { the vecter } \pm \text { is a ecgenvecter }
\end{array}\right.
$$

Fact I: The eigenvalues are the solutions of the charaderistic equation

$$
\operatorname{det}(A-7 I)=0
$$

Fact 2: The eigenvectors for A with eigenvalue λ^{*} are the solutions of

$$
\left(A-\lambda^{*} I\right) \underline{x}=0
$$

Fact 3: There is a diagonal matrix D ad a invertible matrix P such that

$$
P^{-1} A P=D \quad \text { (diagonalization) }
$$

if ad only if $i)$ there are n eigenvahes (when you count with multi plicities)
ii) there are x linearly independent eigen vectors
If this is the case,

$$
D=\left(\begin{array}{ccc}
\lambda_{1} & & 0 \\
\lambda_{2} & 0 \\
0 & \ddots & \lambda_{n}
\end{array}\right) \quad P=\left(\begin{array}{l:l:l:l}
\underline{v}_{1} & V_{2} & \ldots & V_{n}
\end{array}\right)
$$

Ex: $\quad A=\left(\begin{array}{ccc}1 & -2 & -2 \\ 2 & 4 & 2 \\ 2 & -4 & -4\end{array}\right)$
i) Eigenvalues:

$$
\left.\left|\begin{array}{ccc}
1-\lambda \\
2 \\
2
\end{array}\right| \begin{array}{cc}
-2 & -2 \\
4-\lambda & 2 \\
-4 & -4
\end{array} \right\rvert\,=0
$$

$$
\begin{gathered}
(1-\lambda) \cdot\left(\lambda^{2}-0 \cdot \lambda-8\right)-2(-2(y-\lambda)-8)+2(-4+2(4-\lambda))=0 \\
(1-\lambda)\left(\lambda^{2}-8\right)-4 \lambda-8+16-4 \lambda=0 \\
-\lambda^{3}+\lambda^{2}+8 \lambda-86-4 \lambda+8-y \lambda=0 \\
-\lambda^{3}+\lambda^{2}=0 \quad \lambda^{2}(-\lambda+1)=0 \\
\lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=1
\end{gathered}
$$

ii) Eizinvecters:

$$
\begin{gathered}
\lambda=0: \quad\left(\begin{array}{ccc}
1 & -2 & -2 \\
2 & 4 & 2 \\
2 & -4 & -4
\end{array}\right) \underline{x}=0 \\
\uparrow \\
A-\lambda \cdot I \\
\cdots \\
0
\end{gathered}
$$

$$
\left.\begin{array}{l}
\left(\begin{array}{ccc|c}
1 & -2 & -2 & 0 \\
2 & 4 & 2 & 0 \\
2 & -4 & -4 & 0
\end{array}\right) \rightarrow\left(\begin{array}{ccc|c}
(1) & -2 & -2 & 0 \\
0 & 8 & 6 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array} \begin{array}{l}
\begin{array}{l}
x_{1}-2 x_{2}-2 x_{3}=0 \\
8 x_{2}+6 x_{3}=0
\end{array} \\
\underline{x}=\left(\begin{array}{l}
x_{3} \text { tree }
\end{array}\right. \\
x_{2}=-\frac{6}{8} x_{3} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} x_{3} \\
-3 / 4 x_{3} \\
x_{3}
\end{array}\right)=\begin{aligned}
& x_{3} \cdot\left(\begin{array}{c}
1 / 2 \\
-3 / 4 \\
1
\end{array}\right) \\
& \begin{array}{l}
x_{2}=-3 / 4 x_{3} \\
x_{1}=2\left(-3 / 4 x_{3}\right)+2 x_{3} \\
x_{1}=\frac{1}{2} x_{3}
\end{array}
\end{aligned}
$$

Eiguvectors with $\lambda=0$:
$\underline{x}=x_{3} \cdot\left(\begin{array}{c}1 / 2 \\ -3 / 4 \\ 1\end{array}\right) \longrightarrow \begin{aligned} & \text { Just one linearly } \\ & \text { independent eigenvector }\end{aligned}$

$$
v_{1}=\left(\begin{array}{c}
2 \\
-3 \\
4
\end{array}\right)
$$

Is A diagonalizable?
Eigenvalues: $\lambda=0,0,1 \longrightarrow D=\left(\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)$
Eigenvectors: not enough eigenvectors

$$
P=\left(\begin{array}{cc}
2 & * \\
-3 & * \\
4 & *
\end{array}\right)
$$

$\lambda=0$ have mull. 2 but only one lin. indeperdut eigenvelter for $x=0$.

A not dragonalizable
v) Deferiteness
A : symmetric.
$\begin{cases}\text { Leading principal minors: } & D_{1}, D_{2}, \ldots, D_{n} \\ \text { Principal minors: } & \Delta_{1}, \Delta_{2}, \ldots, \Delta_{n}\end{cases}$
Fact:

1) $D_{1}>0, D_{2}>0, \ldots, D_{n}>0 \Longleftrightarrow A$ positive definite
2) $D_{1}<0, D_{2}>0, D_{3}<0, \ldots \Leftrightarrow$ A negation definite
3) $D_{1} \geqslant 0, D_{2} \geqslant 0, \ldots, D_{n} \geqslant 0$ and at lect one is zero $\Rightarrow \begin{aligned} & A \text { may be positive } \\ & \text { semidetetinte }\end{aligned}$ semidetinite
4) $D_{1} \leqslant 0, D_{2} \geqslant 0, D_{3} \leqslant 0, \ldots$ and $-11 \Longrightarrow A$ may be negative
5) All other cases: A is indifinte senidetruite

In case 3) and 4):
$\Delta_{1}, \Delta_{2}, \ldots, \Delta_{n} \geqslant 0 \Longleftrightarrow A$ positive smidetcite $\Delta_{1} \leq 0, \Delta_{2} \geqslant 0, \Delta_{3} \leq 0, \ldots \Leftrightarrow A$ negative smidelinte
\uparrow
(Δ_{i} means all principal minors of order i.

Ex: $\quad A=\left(\begin{array}{lll}(3) & 1 & 9 \\ 1 & 2 & 8 \\ 9 & 8 & 42\end{array}\right)$
symm.

$$
\begin{aligned}
D_{1}= & 3 \\
D_{2}= & 5 \\
D_{3}= & 3 \cdot(84-64)-1 \cdot(42-72) \\
& +9 \cdot(8-18)=60+30-90 \\
= & 0
\end{aligned}
$$

Conc: A may be positive semidetrite
All principal minors

$$
\begin{aligned}
& \Delta_{1}=3,2,42 \geqslant 0 \\
& \Delta_{2}=5,\left|\begin{array}{cc}
2 & 8 \\
8 & 42
\end{array}\right|=20,\left|\begin{array}{cc}
3 & 9 \\
9 & 42
\end{array}\right|=126-81=45 \geqslant 0 \\
& \Delta_{3}=0 \geqslant 0
\end{aligned}
$$

A is positive seridefinite
(2) Unconstrained optimization

Basic techniques.
a) Compute derivatives
b) Find Hessian matrices
a) Stationary pts:

Fact I:
A stationary pt for f is a pt such that $f_{\lambda_{1}}^{\prime}=f_{\lambda_{2}}^{\prime}=\ldots=f_{x_{n}=0}^{\prime}$
Fact 2:
It $\underline{\underline{x}}^{*}$ is a local/global maximin, the $\underline{\underline{x}}^{*}$ is a stationary $\mathrm{pt}^{\text {. }}$
Fact 3:
A stationary pt \underline{x}^{*} can be classified as local max, local min or saddle pt using Hessian:
$H(f)\left(x^{*}\right)$ positive detrinte $\Rightarrow x^{*}$ local min

Hessian of f negative defmite $\Rightarrow x^{*}$ local max at \underline{x}^{*}
indefinite $\Longrightarrow x^{*}$ saddle pt
other cases: no conclusion

Ex: $f(x, y, z)=x^{2}+y^{2}+z^{2}+z^{2}+2 y z-2 x+12 y$

Stafiesncry pts:

$$
y+z+6=0 \Rightarrow y=-6-z
$$

$$
\begin{aligned}
& f_{x}^{\prime}=2 x-2=0 \quad x=1 \\
& f_{y}^{\prime}=2 y+2 z+12=0 \\
& f_{z}^{\prime}=2 z+3 z^{2}+2 y=0 \\
& =0 y=-6-z \\
& (6-z)=0 \quad 3 z^{2}-12=0 \\
& z^{2}=4 \\
& z=52 \\
& z=2, y=-8, x=1 \\
& z=-2, y=-4, x=1
\end{aligned}
$$

$$
2 z+3 z^{2}+2 \cdot(-6-z)=0 \quad 3 z^{2}-12=0
$$

Stat pts: $(x, y, z)=(1,-8,2)$

$$
(1,-4,-2)
$$

Closificition: $H(t)=\left(\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 2 \\ 0 & 2 & 2+6 z\end{array}\right)$

$$
(1,-8,2): \quad H(f)(1,-8,2)=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & 1.4
\end{array}\right)
$$

$$
\begin{aligned}
& D_{1}=2 \\
& D_{2}=4 \\
& D_{3}=2 \cdot 24=48
\end{aligned}
$$

positive defy. \Rightarrow local min at $(1,-8,2)$

$$
\begin{array}{rlll}
(1,-4,-2) & & H(t)(1,-4,-2) & \\
& =\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 2 \\
0 & 2 & -10
\end{array}\right) & \begin{array}{l}
D_{1}=2 \\
D_{2}=4 \\
D_{3}=2(-20-4)=-48
\end{array} & \begin{array}{l}
\text { indefinite }
\end{array} \Rightarrow \text { saddle pt } \\
& & \text { at }(1,-4,-2)
\end{array}
$$

ii) Convex / concave functions and global max/min

Fact I:
f is convex $\Longrightarrow H(f)$ is positive senidetnite for all \underline{x} f is concave $H(t)$ is negation semi definite - 11 -

Fact 2:
If f is concave, then any stationery $p t$ is global max, -li- convex \qquad 11 \qquad global min.

Ex: $f(x, y, z)=x^{2}+y^{2}+y^{4}+y z-1$

$$
\begin{array}{ll}
f_{x}^{\prime}=2 x & \\
f_{y}^{\prime}=2 y+4 y^{3}+z & H(f)=\left(\begin{array}{lcc}
2 & 0 & 0 \\
0 & 2+12 y^{2} & 1 \\
0 & 1 & 0
\end{array}\right) \\
f_{z}^{\prime}=y & D_{1}=2>0 \\
D_{2}=2\left(2+12 y^{2}\right)=4+24 y^{2}>0 \\
D_{3}=2 \cdot(0-1)=-2<0
\end{array}
$$

$H(t)$ indefinite for all (x, y, z). f is not convex, not concave

Even it f is not convex and not concave, it could of course still have stobal max /min.
iii) Envelope theorem
$f\left(x_{1}, \ldots, x_{n} ; a\right)=f(x ; a) \quad$ function with parameter a
Consider the unconstrained optimization problem
$\max (m i n \quad f(\underline{x} ; a)$

Assume that it has solution $x^{*}(a)$ dependims on a, ad let $f^{*}(a)=f\left(x^{*}(a)\right) b x$ the maximin value.

Envelope thu: $\quad \frac{d f^{*}(a)}{d a}=\frac{\partial f}{\partial a}\left(\underline{x}^{*}(a)\right)$

Ex: $\quad \min f(x, y ; h)=h x^{4}+y^{4}+4 x^{2}-(6+h) x y+4 y^{2}-3 h$
i) For which values of h is f convene?

$$
\begin{aligned}
& f_{x}^{\prime}=4 n x^{3}+8 x-(6+h) y \\
& f_{y}^{\prime}=4 y^{3}-(6+h) x+8 y \\
& H(f)=\left(\begin{array}{ll}
12 h x^{2}+8 & -(6+h) \\
-(6+h) & 12 y^{2}+8
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
D_{1} & =12 h x^{2}+8 \quad \longleftarrow \quad \text { When } h \geqslant 0, ~ \\
D_{2} & =\left(12 h x^{2}+8\right)\left(12 y^{2}+8\right)-(6+h)^{2} \\
& =144 h x^{2}+96 h x^{2}+96 y^{2}+\left[64-(6+h)^{2}\right]
\end{aligned}
$$

\longleftarrow When $h \leq 2$, $D_{2} \geq 0$ for all (x, y)

$$
\Delta_{1}=12 y^{2}+8>0 \text { for all }(x, y)
$$

Check the other principal minor of order since $D_{2}=0$ at $(0,0)$ when $h=2$

Conclusion: When $0 \leqslant h \leqslant 2$ if convex
ii) Find $x^{*}(h), y^{*}(h)$ when $h=0$:
$h=0 \Rightarrow f$ convex, so bony stationary pt is global min.
Stationary pts: $h=0$

$$
\begin{array}{ll}
8 x-6 y=0 & x=\frac{6 y}{8}=3 y / 4 \\
4 y^{3}-6 x+8 y=0 & 4 y^{3}-6 \cdot(3 y / 4)+8 y=0 \\
& 4 y^{3}-\frac{18}{4} y+8 y=0 \quad 1.2 \\
& 8 y^{3}-9 y+16 y=0 \\
& 8 y^{3}+7 y=0 \\
& y\left(8 y^{2}+7\right)=0 \\
& y=0 \text { or } y^{2}=-7 / 8 \\
& (\text { no sol }) \\
& y=0 \Rightarrow x=0
\end{array}
$$

Stat. pts: $(x, y)=(0,0)$
This is global min for $h=0$, so $\left(x^{*}(0), y^{*}(0)\right)=(0,0)$
iii) If h increases from $h=0$, what happens with $f^{*}(h)$?

$$
\begin{aligned}
f^{*}(0) & =f(0,0)=-3 h \quad \text { min. value when } h=0 \\
\frac{d f^{*}(h)}{d h} & =\frac{\partial f}{\partial h}\left(x^{*}(h) \cdot y^{*}(h)\right)=\left.\left(x^{4}-x y-3\right)\right|_{x=x^{*}(h), y=y^{*}(h)} \\
& =x^{*}(h)^{4}-x^{*}(h) y^{*}(h)-3
\end{aligned}
$$

$\frac{d f^{*}(b)}{d h} F_{h=0}=x^{*}(0)^{4}-x^{*}(0) y^{*}(0)-3=0^{4}-0 \cdot 0-3=-3$

The minimum value frow $h=0$

```
Written examination: GRA 60353 Mathematics
Examination date: 13.12.2012 09:00-12:00 Total no. of pages: 2
Permitted examination A bilingual dictionary and BI-approved calculator TEXAS
support material: INSTRUMENTS BA II Plus
Answer sheets: Squares
    Counts 80% of GRA 6035 The subquestions are weighted equally
    Responsible department: Economics
```


Question 1.

We consider the matrix A given by

$$
A=\left(\begin{array}{lll}
t & 1 & 1 \\
t & 2 & 1 \\
4 & t & 2
\end{array}\right)
$$

(a) Compute the determinant and rank of A.
(b) Compute all eigenvalues of A when $t=-2$. Is A diagonalizable when $t=-2$?

Question 2.

We consider the function f with parameter h, given by $f(x, y, z ; h)=12-x^{4}-h x^{2}-3 y^{2}+6 x z-6 z^{2}+h^{2}$. The function f is defined for all points $(x, y, z) \in \mathbb{R}^{3}$.
(a) Compute the Hessian matrix of f, and show that f is concave if and only if $h \geq H$ for a constant H. What is the value of H ?
(b) Find the global maximum point ($x^{*}(h), y^{*}(h), z^{*}(h)$) of f when $h \geq H$.
(c) Will the global maximum value $f^{*}(h)$ increase or decrease when the value of the parameter h increases? We assume that the initial value of h satisfies $h \geq H$.

Question 3.

Find the general solution of the following differential equations:
(a) $y^{\prime \prime}-5 y^{\prime}+6 y=10 e^{-t}$
(b) $4 t e^{2 t} y-(1-2 t) e^{2 t} y^{\prime}=0 \quad($ when $t>1 / 2)$

Question 4.

We consider a model for housing prices, where p_{t} is the price after t years. The model is given by the difference equation

$$
p_{t+2}-2 p_{t+1}+p_{t}=-15, \quad p_{0}=695, p_{1}=743
$$

(a) Solve the difference equation.
(b) We define $d_{t}=p_{t+1}-p_{t}$ to be the change in housing prices. Show that $d_{t+1}-d_{t}$ is constant, and use this to determine when housing prices will increase and when housing prices will decrease.

Question 5.

We consider the following optimization problem:

$$
\max \ln \left(x^{2} y\right)-x-y \text { subject to }\left\{\begin{array}{l}
x+y \geq 4 \\
x \geq 1 \\
y \geq 1
\end{array}\right.
$$

Sketch the set of admissible points, and solve the optimization problem.

Evaluation guidelines: GRA 60353 Mathematics

Examination date: $\quad 13.12 .2012$ 09:00-12:00 Total no. of pages: 4
Permitted examination A bilingual dictionary and BI-approved calculator TEXAS
support material: INSTRUMENTS BA II Plus
Answer sheets:
Squares
Counts 80% of GRA 6035 The subquestions are weighted equally Responsible department: Economics

Question 1.

(a) We compute the determinant of A using cofactor expansion along the first column, and find that

$$
\operatorname{det}(A)=\left|\begin{array}{lll}
t & 1 & 1 \\
t & 2 & 1 \\
4 & t & 2
\end{array}\right|=t(4-t)-t(2-t)+4 \cdot(-1)=\mathbf{2 t}-\mathbf{4}
$$

Since $\operatorname{det}(A) \neq 0$ for $t \neq 2$, and the minor $\left|\begin{array}{l}1 \\ 2\end{array}\right|=-1$ of order two is non-zero, we have that

$$
\operatorname{rk}(A)=\left\{\begin{array}{ll}
3, & t \neq 2 \ll \\
2, & t=2
\end{array}<\text { since } \left.|A| \neq 0 \quad 1 \begin{array}{l}
1 \\
2
\end{array} \right\rvert\, \neq 0\right.
$$

(b) When $t=-2$, the characteristic equation of A is given by

$$
\operatorname{det}(A-\lambda I)=\left|\left(\begin{array}{c}
-2-\lambda \\
-2 \\
4
\end{array}\right) \begin{array}{cc}
1 & 1 \\
2-\lambda & 1 \\
-2 & 2-\lambda
\end{array}\right|=0
$$

Cofactor expansion along the first column gives

$$
\frac{(-2-\lambda)\left((2-\lambda)^{2}+2\right)}{\text { nd that } 2 \text { this reduces to }}-\frac{(-2)(2-\lambda+2)}{}+4(1-(2-\lambda))=0
$$

and we find that \angle this reduces to

The eigenvalues are therefore $\lambda=-2$ and $\lambda=2$, where the last eigenvalue has multiplicity two. When $\lambda=2$, the eigenvectors are given by $(A-2 I) \mathbf{x}=0$, and the matrix

$$
A-2 I=\left(\begin{array}{ccc}
-4 & 1 & 1 \\
-2 & 0 & 1 \\
4 & -2 & 0
\end{array}\right)
$$

$|A-2 I|=0$ has rank two since $A-2 I$ has a non-zero minor $\left|\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right|=1$ of order two - it cannot have rank Since 2 is three since $\lambda=2$ is an eigenvalue. Therefore, the linear system has just one free variable while eigenvalue $\lambda=2$ is an eigenvalue of multiplicity two. So A is not diagonalizable when $t=-2$.

$$
\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right| \neq 0 \Rightarrow r k(A-2 I)=2 \Rightarrow \begin{aligned}
& 2 \text { pivots } \quad \Rightarrow \text { ore var. } \Rightarrow \begin{array}{l}
\text { only line linindep. } \\
\text { eigenvector for } \lambda=2
\end{array} \Rightarrow \text { not diag. } \quad \Rightarrow \text { enough } .
\end{aligned}
$$

$D_{1}=-\underbrace{-12 \lambda^{2}} \underbrace{-2 h}$
$\leqslant 0$ constant,
for all $x \leqslant 0$ for $h \geqslant 0$ Question 2 .
when $h \geqslant 0$
$D_{1} \leqslant 0$ for all $x \times y, z$
$D_{2}=-6 \cdot D_{1} \geqslant 0$
for all (x, y, z) when $n \geq 0$

So for all Ya . We compute the partial derivatives and the Hessian matrix of f :

$$
\left.D_{3}=-6.144 \lambda^{2}\right\}\left(\begin{array}{c}
f_{x}^{\prime} \\
f_{y}^{\prime} \\
f_{z}^{\prime}
\end{array}\right)=\left(\begin{array}{c}
-4 x^{3}-2 h x+6 z \\
-6 y \\
6 x-12 z
\end{array}\right), \quad f^{\prime \prime}=\left(\begin{array}{ccc}
-12 x^{2}-2 h & 0 & 6 \\
0 & -6 & 0 \\
6 & 0 & -12
\end{array}\right)
$$ $D_{3}=-6\left(144 x^{2}+24 h-36\right)$. Hence $D_{1} \leq 0$ for all (x, y, z) if and only if $h \geq 0$, and if this is the case then $D_{2}=-6 D_{1} \geq 0$. Moreover, $D_{3} \leq 0$ for all (x, y, z) if and only if $h \geq 3 / 2$. This means that $D_{1} \leq 0, D_{2} \geq 0, D_{3} \leq 0$ if and only if $h \geq 3 / 2$, and the equalities are strict if $h>3 / 2$. If $h=3 / 2$, then $D_{3}=0$, and we compute the remaining principal minors. We find that $\Delta_{1}=-6,-12 \leq 0$ and that $\Delta_{2}=144 x^{2}, 72 \geq 0$. We conclude that f is concave if and only if $h \geq 3 / 2$, and $H=\mathbf{3 / 2}$.

(b) We compute the stationary points, which are given by the equations

$$
-4 x^{3}-2 h x+6 z=0, \quad-6 y=0, \quad 6 x-12 z=0
$$

The last two equations give $y=0$ and $z=x / 2$, and the first equations becomes

$$
\begin{aligned}
& \text { (} D_{1} \text { and } \\
& \text { this is } \\
& \text { 2. This } \\
& \text { strict if } \\
& \text { We find } \\
& e \text { if and } \\
& \begin{array}{l}
D_{1}=0 \text { for } x=0, \\
h=0 \\
D_{3}=0 \text { for } x=0, \\
n=1.5
\end{array}
\end{aligned}
$$

$$
-4 x^{3}-2 h x+3 x=x\left(-4 x^{2}+3-2 h\right)=0 \Leftrightarrow x=0 \quad \text { we must check } \Delta_{i}
$$

since $x^{2}=(3-2 h) / 4$ has no solutions when $h>3 / 2$ and the solution $x=0$ when $h=3 / 2$. The stationary points are therefore given by $\left(x^{*}(h), y^{*}(h), z^{*}(h)\right)=(\mathbf{0}, \mathbf{0}, \mathbf{0})$ when $h \geq 3 / 2$, and this is the global maximum since f is concave.
(c) Let $h \geq 3 / 2$. By the Envelope Theorem, we have that

$$
\frac{d}{d h} f^{*}(h)=\left.\frac{\partial f}{\partial h}\right|_{(x, y, z)=(0,0,0)}=\left.\left(-x^{2}+2 h\right)\right|_{(x, y, z)=(0,0,0)}=2 h \geq 3
$$

Since the derivative is positive, the maximal value will increase when h increases. We could also compute $f^{*}(h)=f(0,0,0)=12+h^{2}$ explicitly fo $h \geq 3 / 2$, and use this to see that $f^{*}(h)$
increases when h increases.

$$
\begin{aligned}
& \text { this is } \\
& \text { the max for } h \geq 1.5 \text { this is } \frac{\partial f}{\partial h}
\end{aligned}
$$

Question 3.

(a) The homogeneous equation $y^{\prime \prime}-5 y^{\prime}+6 y=0$ has characteristic equation $r^{2}-5 r+6=0$, and therefore roots $r=2,3$. Hence the homogeneous solution is $y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{3 t}$. To find a particular solution of $y^{\prime \prime}-5 y^{\prime}+6 y=10 e^{-t}$, we try $y=A e^{-t}$. This gives $y^{\prime}=-A e^{-t}$ and $y^{\prime \prime}=A e^{-t}$, and substitution in the equation gives $(A+5 A+6 A) e^{-t}=10 e^{-t}$, or $12 A=10$. Hence $A=5 / 6$ is a solution, and $y_{p}(t)=\frac{5}{6} e^{-t}$ is a particular solution. This gives general solution

$$
y(t)=\mathbf{C}_{1} \mathbf{e}^{\mathbf{2 t}}+\mathbf{C}_{2} \mathbf{e}^{\mathbf{3 t}}+\frac{\mathbf{5}}{\mathbf{6}} \mathrm{e}^{-\mathbf{t}}
$$

(b) The differential equation $4 t e^{2 t} y-(1-2 t) e^{2 t} y^{\prime}=0$ is exact if and only if there is a function $h(t, y)$ such that

$$
\frac{\partial h}{\partial t}=4 t e^{2 t} y, \quad \frac{\partial h}{\partial y}=-(1-2 t) e^{2 t}
$$

We see that $h(t, y)=-(1-2 t) e^{2 t} y$ is a solution to the last equation, and differentiation shows that it is a solution to the first equation as well. Therefore the solution of the exact differential equation is given by

$$
h(t, y)=-(1-2 t) e^{2 t} y=C \quad \Rightarrow \quad y=\frac{\mathbf{C e}^{-2 t}}{2 \mathbf{t}-1} \quad(\text { when } t>1 / 2)
$$

