GRA 6035 MATHEMATICS

Problems for Lecture 11

Key problems

Problem 1.

Solve the exact differential equations:

a)
$$3t^2 - 2t + 2y \cdot y' = 0$$
 b) $2y - 3t^2 + 2(y+t)y' = 0$ c) $\frac{y(1-2\ln t)}{t^3} + \frac{\ln t}{t^2} \cdot y' = 0$

Problem 2.

Find the equilibrium states and determine their stability:

a) y' = 6 - 2y b) $y' = y^2 - 4$ c) y' = 5y(1 - y/10)

In each case, sketch solutions curves in the (t, y)-coordinate system to illustrate the results.

Problem 3.

Solve the differential equations:

a) y'' + 6y' - 16y = 16t - 22 b) $y'' + 6y' + 9y = 4e^{-t}$ c) $y'' - 3y' + 2y = 3e^{2t}$ d) $y'' - y = t^2$

Problems from Differential Equations

Exercise problems 1.17 - 1.34 (full solutions on the web page)

Problems from the Digital Workbook

Exercise problems Excel problems

10.13 - 10.16, 11.1 - 11.16 (full solutions in the workbook)11.17 (full solutions in the workbook)As a minimum, you should understand what happens when you change the parameters in the Excel models that are available in the workbook.

Answers to key problems

Problem 1. *a*) $y = \pm \sqrt{t^2 - t^3 + C}$ *b*) $y = -t \pm \sqrt{t^2 + t^3 + C}$ *c*) $y = \frac{Ct^2}{\ln t}$ Problem 2.

a) $y_e = 3$ is globally asymptotically stable

b) $y_e = -2$ is stable (but not globally asymptotically stable), $y_e = 2$ is unstable c) $y_e = 0$ is unstable, $y_e = 10$ is stable (but not globally asymptotically stable)

Problem 3.

a) $y = C_1 e^{-8t} + C_2 e^{2t} + 1 - t$ b) $y = C_1 e^{-3t} + C_2 t e^{-3t} + e^{-t}$ c) $y = C_1 e^{2t} + C_2 e^{t} + 3t e^{2t}$ d) $y = C_1 e^{t} + C_2 e^{-t} - t^2 - 2$

