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Question 1.

(a) We compute the determinant of A using cofactor expansion along the first column, and find
that

det(A) =

∣∣∣∣∣∣∣∣∣
2 4 s

−4 −6 −3

s s 1

∣∣∣∣∣∣∣∣∣ = 2(−6 + 3s) + 4(4− s2) + s(−12 + 6s) = 2s2 − 6s + 4

Since det(A) 6= 0 for s 6= 1, 2, and the minor
∣∣ 2 4
−4 −6

∣∣ = 4 of order two is non-zero, we have
that

rk(A) =

{
3, s 6= 1, 2

2, s = 1, 2

(b) When s = 0, the characteristic equation of A is given by

det(A− λI) =

∣∣∣∣∣∣∣∣∣
2− λ 4 0

−4 −6− λ −3

0 0 1− λ

∣∣∣∣∣∣∣∣∣ = 0

Cofactor expansion along the third row gives

(1− λ)(λ2 + 4λ+ 4) = (1− λ)(λ+ 2)2 = 0

The eigenvalues are therefore λ = 1 and λ = −2, where the last eigenvalue has multiplicity
two. When λ = −2, the eigenvectors are given by (A+ 2I)x = 0, and the matrix

A+ 2I =


4 4 0

−4 −4 −3

0 0 3


has rank two since A + 2I has a non-zero minor

∣∣ 4 0
−4 −3

∣∣ = −12 of order two — it cannot
have rank three since λ = −2 is an eigenvalue. Therefore, the linear system has just one free
variable while λ = −2 is an eigenvalue of multiplicity two. So A is not diagonalizable when
s = 0.
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Question 2.

(a) We compute the partial derivatives and the Hessian matrix of f :f ′x
f ′y

 =

y2 + 15x2y − a2y

2xy + 5x3 − a2x

 , f ′′ =

 30xy 2y + 15x2 − a2

2y + 15x2 − a2 2x


(b) We compute the stationary points, which are given by the equations

y2 + 15x2y − a2y = 0, 2xy + 5x3 − a2x = 0

The first equation give y = 0 or y + 15x2 − a2 = 0. If y = 0, then the second equation gives
5x3 − a2x = 0, which means that x = 0 or x = ±a/

√
5. This gives stationary points

(0, 0), (a/
√

5, 0), (−a/
√

5, 0)

If y 6= 0, then y = a2 − 15x2, and the second equation gives x = 0 or 2y + 5x2 − a2 = 0. In
the first case, x = 0 and y = a2. In the second case, 2(a2 − 15x2) + 5x2 − a2 = a2 − 25x2 = 0,
or x = ±a/5 and y = 2a2/5. We get stationary points with y 6= 0 given by

(0, a2), (±a/5, 2a2/5)

To find the local maximum, we look at the leading principal minors of f ′′(x∗, y∗) for each
stationary point (x∗, y∗). We see that all the stationary points with x = 0 or y = 0 are saddle
points, since D2 < 0 when a > 0. For (x∗(a), y∗(a)) = (±a/5, 2a2/5), we have

D2 =
24

25
a4 − (

2

5
a2)2 =

20

25
a4 > 0

and D1 = 30xy = ±12/5 a3. This means that there is exactly one local maximum point
for a given a > 0, given by (x∗(a), y∗(a)) = (−a/5, 2a2/5). The point (a/5, 2a2/5) is a local
minimum point.

(c) Let a > 0. By the Envelope Theorem, we have that

d

da
f∗(a) =

∂f

∂a

∣∣∣
(x,y)=(x∗(a),y∗(a))

= (−2axy)
∣∣
(x,y)=(x∗(a),y∗(a))

=
4

25
a4 > 0

Since the derivative is positive, the local maximal value will increase when a increases. We
could also compute f∗(a) = f(x∗(a), y∗(a)) = 4/125 a5 explicitly for a > 0, and use this to
see that f∗(a) increases when a increases.

Question 3.

(a) The equation y′′ = −15 gives y′ = −15t+C1 and y = −7.5t2 +C1t+C2. Alternatively, we can
solve the differential equation as a second order linear equation. The conditions y(0) = 695
and y′(0) = 55.5 give C2 = 695 and C1 = 55.5, and the solution is

y = −7.5t2 + 55.5t+ 695

(b) The equation y′ = (1− 3t2)y2 is separable, and can be written as

1/y2 · y′ = 1− 3t2 ⇒
∫
y−2 dy =

∫
1− 3t2 dt

This gives −1/y = t − t3 + C. The initial condition y(0) = −1 gives 1 = C, and therefore
1/y = t3 − t− 1. The solution is

y =
1

t3 − t− 1

(c) The differential equation (2y−t)ey2−yty′−yey2−yt = 0 is exact if and only if there is a function
h(t, y) such that

∂h

∂t
= −yey2−yt, ∂h

∂y
= (2y − t)ey2−yt
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We see that h(t, y) = ey
2−yt is a solution to these equations. Therefore the solution of the

exact differential equation is given by

h(t, y) = ey
2−yt = C

The initial condition y(0) = 1 gives e1 = C. This means that the solution is given implicitly
by

ey
2−yt = e ⇒ y2 − yt = 1 ⇒ y2 − yt− 1 = 0

This has explicit solution

y =
t±
√
t2 + 4

2
=
t

2
+

√
t2 + 4

2

where the sign is + since y(0) = 1.

Question 4.

(a) For the sketch, see the figure below. We see from the sketch that the region defined by the
constraints is closed and bounded. Alternatively, it is closed since it is defined by closed
inequalities ≤ and ≥ and bounded since any point in the region must satisfy 0 ≤ x ≤ 5 and
0 ≤ y ≤ 5. Since f is continuous, there is a solution to the optimization problem, and we
know that a solution must either satisfy the Kuhn-Tucker conditions, or else be a point where
NDCQ fails. We therefore check NDCQ: Each admissible point is either i) an interior point
(with x > 0, y > 0 and x + y < 5), ii) a point on one of the sides in the triangle but not a
corner (where one of constraints is binding) or iii) one of the three corners (where two of the
constraints are binding). In case i) the NDCQ condition is empty and therefore satisfied. In
case ii) we must chech that the rank of the matrix of partial derivatives of gi has rank one,
where g1 = −x, g2 = −y or g3 = x + y correspond to the three sides. The corresponding
matrices (

−1 0
)
,
(

0 −1
)
,
(

1 1
)

all have rank one, so NDCQ is satisfied in case ii). In case iii) we must check that the rank of
the matrix of partial derivatives of two of the gi’s is two. We see that the matrices−1 0

0 −1

 ,

−1 0

1 1

 ,

0 −1

1 1


all have rank two, and NDCQ is also satisfied in case iii). We conclude that there are no
admissible points where NDCQ fails, and therefore there must a solution to the optimization
problem where the Kuhn-Tucker conditions are satisfied.
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(b) We rewrite the constraints as g1 = −x ≤ 0, g2 = −y ≤ 0 and g3 = x+ y ≤ 5, and obtain the
Lagrangian

L = xy2 + 5x3y − xy − λ(x+ y)− ν1(−x)− ν2(−y)

= xy2 + 5x3y − xy − λ(x+ y) + ν1x+ ν2y

The Kuhn-Tucker conditions for this problem are the first order conditions

L′x = y2 + 15x2y − y − λ+ ν1 = 0

L′y = 2xy + 5x3 − x− λ+ ν2 = 0

the constraints x+y ≤ 5 and x, y ≥ 0, and the complementary slackness conditions λ, ν1, ν2 ≥ 0
and

λ(x+ y) = 0, ν1x = 0, ν2y = 0

There is one obvious solution of the Kuhn-Tucker conditions, given by (x, y) = (0, 0), with
λ = ν1 = ν2 ≥ 0, where the value of f is given by f(0, 0) = 0. Let us check if there are other
solutions of the Kuhn-Tucker conditions: If ν1 > 0, then x = 0 and λ = ν2 > 0 by the second
FOC, and this implies that x+ y = 0 and therefore y = 0. Similarly, if ν2 > 0, then y = 0 and
λ = ν1 > 0 by the first FOC, and this implies that x + y = 0 and therefore x = 0. We may
therefore assume that ν1 = ν2 = 0 when we look for solutions (x, y) 6= (0, 0). If λ > 0, then
x + y = 0 and this implies x = y = 0 since x, y ≥ 0. We may therefore assume that λ = 0
when we look for solutions (x, y) 6= (0, 0). Then we have the FOC

y2 + 15x2y − y = 0, 2xy + 5x3 − x = 0

We see that this is exactly the same condition as in Question 2 with a = 1. Therefore the
solution is (x, y) = (0, 0), (±1/

√
5, 0), (0, 1), (±1/5, 2/5). Of these solutions to the FOC’s, only

(0, 0), (1/
√

5, 0), (0, 1) and (1/5, 2/5) satisfy the constraints x, y ≥ 0 and x + y ≤ 5. Since
f(0, 0) = f(1/

√
5, 0) = f(0, 1) = 0 and f(1/5, 2/5) = −4/125, it follows that the solution to

the optimization problem is

(x, y) = (1/5, 2/5) with λ = ν1 = ν2 = 0

and with minimum value f(1/5, 2/5) = −4/125.
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