EXAMINATION QUESTION PAPER - Written examination

GRA 60353 Mathematics

Department of Econom	ics		
Start date:	20.06.2018	Time 09.00	
Finish date:	20.06.2018	Time 12.00	
Weight:	80% of GRA 6035		
Total no. of pages:	2 incl. front page		
Answer sheets:	Squares		
Examination support materials permitted:	BI-approved exam calculator. Simple calculator. Bilingual dictionary.		
Re-sit	Ordinary		

Exam Final exam in GRA 6035 Mathematics Date June 20th, 2018 at 0900 - 1200

This exam consists of 12+1 problems (one additional problem is for extra credits, and can be skipped). Each problem has a maximal score of 6p, and 72p (12 solved problems) is marked as 100% score.

You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

QUESTION 1.

We consider the matrix A and the vector **b** given by

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & t & t^2 \\ 1 & -t & t^2 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ t^3 \\ -t^3 \end{pmatrix}$$

- (a) (6p) Compute the determinant of A.
- (b) (6p) Compute the rank of A.
- (c) (6p) Determine the values of t such that the linear system $A\mathbf{x} = \mathbf{b}$ is consistent.

QUESTION 2.

Find the general solutions of the following differential equations:

- (a) **(6p)** y'' 29y' + 100y = 100t 29
- (b) (6p) $y' + 2ty = 4e^{-t^2}$
- (c) (6p) $ty' = y \ln(y)$

QUESTION 3.

Let u be the function given by $u(x, y, z) = 2x^2 - 2xy - 4xz + y^2 + 4z^2 - 2$, and consider the composite function $f(x, y, z) = e^u + e^{-u}$ with u = u(x, y, z).

- (a) (6p) Find all stationary points of u = u(x, y, z).
- (b) (6p) Determine the minimal value of u = u(x, y, z), if it exists.
- (c) (6p) Determine the maximum and minimum values of f, it they exist.

QUESTION 4.

We consider the following Kuhn-Tucker problem:

max
$$f(x,y) = xy(x-y)$$
 subject to $x^2 + y^2 + (x-y)^2 \le 96$

- (a) (6p) Write down all Kuhn-Tucker conditions for this problem.
- (b) (6p) Find all points $(x, y; \lambda)$ with $x, y \neq 0$ that satisfy the Kuhn-Tucker conditions.
- (c) (6p) Show that the Kuhn-Tucker problem has a maximum, and find the maximum value.

QUESTION 5.

Extra credit (6p)

Solve the logistic differential equation y' = ry(1 - y/K) when r > 0 and K > 0 are given constants. Sketch the solution curve y = y(t), showing the equilibrium states and their stability properties.