EXAMINATION QUESTION PAPER - Written examination

GRA 60353 Mathematics

Department of Economics			
Start date:	27.11.2018	Time 09.00	
Finish date:	27.11.2018	Time 12.00	
Weight:	80% of GRA 6035		
Total no. of pages:	2 incl. front page		
Answer sheets:	Squares		
Examination support materials permitted:	BI-approved exam calculator. Simple calculator. Bilingual dictionary.		

Exam Final exam in GRA 6035 Mathematics Date November 27th, 2018 at 0900 - 1200

This exam consists of 12+1 problems (one additional problem is for extra credits, and can be skipped). Each problem has a maximal score of 6p, and 72p (12 solved problems) is marked as 100% score.

You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

QUESTION 1.

We consider the matrix A given by

$$A = \begin{pmatrix} 1 & 0 & -1 & 0 \\ 0 & 2 & 0 & 8 \\ -1 & 0 & 1 & 0 \\ 0 & 8 & 0 & -2 \end{pmatrix}$$

- (a) (6p) Compute the rank of A. How many free variables does $A \cdot \mathbf{x} = \mathbf{0}$ have?
- (b) (6p) Find Null(A), and determine its dimension.
- (c) (6p) Determine the definiteness of A.

QUESTION 2.

- (a) (6p) Find the general solution of the differential equation $y'' 12y' + 20y = 3e^{-t}$.
- (b) (6p) Find the general solution of the following system of differential equations:

$$\begin{array}{rcrcrcrcrc} y_1' &=& 3y_1 &+& 4y_2 \\ y_2' &=& 4y_1 &-& 3y_2 \end{array}$$

(c) (6p) Find the equilibrium states of the autonomous differential equation y' = 0.15y(1-y/200)and determine their stability. Are any of the equilibrium states globally asymptotically stable?

QUESTION 3.

We consider the function $f(x, y, z) = 16 - x^4 - 2x^2 - 3y^2 + 6xz - 6z^2 + 10z$.

- (a) (6p) Find all stationary points of f with x = 1.
- (b) (6p) Show that f has a global maximum point, and find the maximal value of f.
- (c) (6p) Use the envelope theorem to estimate max $(16 x^4 2x^2 3y^2 + 6xz 6z^2 + 11z)$.

QUESTION 4.

We consider the Kuhn-Tucker problem

max
$$f(x, y, z) = 3x^2 - y^2 - 2z^2$$
 subject to $2x^4 + 2y^4 + z^4 \le 18$

- (a) (6p) Write down the Kuhn-Tucker conditions for this problem.
- (b) (6p) Find all points $(x, y, z; \lambda)$ that satisfy the Kuhn-Tucker conditions.
- (c) (6p) Show that the best candidate points from (b) are the maximum points, and use this to determine the maximum value.

QUESTION 5.

Extra credit (6p) Solve the logistic differential equation y' = 0.15y(1 - y/200), and determine the time it takes for the system to reach 90% of the carrying capacity when $y_0 = 50$.