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Abstract Let (X, ) be a D-scheme in the sense of Beilinson and Bernstein,
given by an algebraic variety X and a morphism &y — 2 of sheaves of rings
on X. We consider noncommutative deformations of quasi-coherent sheaves of left
@-modules on X, and show how to compute their pro-representing hulls. As an ap-
plication, we compute the noncommutative deformations of the left Zx-module Ox

when X is any elliptic curve.
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1990. 4 10.1 Introduction

Let k be an algebraically closed field of characteristic 0, and let X be an algebraic
4 variety over k, i.e. an integral separated scheme of finite type over k. A D-algebra
in the sense of Beilinson and Bernstein [2] is a sheaf 2 of associative rings on
X, together with a morphism i : Ox — 9 of sheaves of rings on X, such that the
4 following conditions hold: (1) 2 is quasi-coherent as a left and right &x-module
3 via i, and (2) for any open subset U C X and any section P € 7 (U), there is an
integer n > 0 such that
[...[[Rail,a2),.--,an] =0

for all sections ay,...,a, € Ox(U), where [P,0] = PQ— QP is the commutator in
P(U). When 2 is a D-algebra on X, the ringed space (X, 9) is called a D-scheme.

Let us denote the sheaf of k-linear on X by Zx, and for any Lie algebroid g of
X /k, let us denote the enveloping D-algebra of g by U(g). We see that PDx and U(g)
are examples of noncommutative D-algebras on X, and that Ox is an example of a
commutative D-algebra on X.
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110 E. Eriksen

Let us define a D-module on a D-scheme (X, 9) to be a quasi-coherent sheaf of
left 9-modules on X. In Eriksen [3], we developed a noncommutative global de-
formation theory of D-modules that generalizes the usual (commutative) global
deformation theory of D-modules, and the noncommutative deformation theory of
modules in the affine case, due to Laudal. In Sects. 10.2-10.3, we review the essen-
tial parts of this theory, including the global Hochschild cohomology and the global
obstruction calculus, all the time with a view towards concrete computations.

The purpose of this paper is to show how to apply the theory in order to compute
noncommutative global deformations of interesting D-modules. In Sect. 10.4, we
consider the noncommutative deformation functor

Defp, 1a; — Sets

of Ox considered as a left Px-module when X is any over k. Recall that in this
case, a quasi-coberent Zx-module structure on &y is the same as an integrable
connection on &, and according to a theorem due to André Weil, see Weil [7] and
also Atiyah [1], a line bundle admits an integrable connection if and only if it has
degree zero.

We show that the noncommutative deformation functor Defg, : a; — Sets has
pro-representing hull H = k<t1,1°>/(ti1t, — tot1) = k{[t1,2,]] that is commutative,
smooth and of dimension two. We also compute the corresponding versal family in
concrete terms, and remark that it does not admit an algebraization.

10.2 Noncommutative Global Deformations of D-Modules

Let (X,9) be a D-scheme, and let QCoh(2) be the category of quasi-coherent
sheaves of left 2-modules on X. This is the full subcategory of Sh(X, 9), the cate-
gory of sheaves of left 2-modules on X, consisting of quasi-coherent sheaves. We
recall that a sheaf & of left 9-modules on X is quasi-coherent if for every point
x € X, there exists an open neighbourhood U C X of x, free sheaves .%,.% of
left 2|y-modules on U, and an exact sequence 0« F|y «— % — .4 of sheaves
of left Z|y-modules on U. We shall refer to the quasi-coherent sheaves of left 9-
modules on X as D-modules on the D-scheme X,9).

For any D-scheme (X, 9), QCoh(2) is an Abelian k-category, and we consider
noncommutative deformations in QCoh(2). For a finite family & = {#1,-.., %}
of quasi-coherent left 2-modules on X, there is a noncommutative deformation
functor Def? : a, — Sets of & in QCoh(2), generalizing the noncommutative
deformation functor of modules introduced in Laudal [5]. We shall provide a brief
description of Defg below; see Eriksen [3] for further details.

We recall that the objects of the category a p of p-pointed noncommutative Artin
rings are Artinian rings R, together with pairs of structural morphisms f : k? - R
and g : R — k?”, such that go f = id and the radical J (R) = Ker(g) is nilpotent.
The morphisms are the natural commutative diagrams. For any R € a p, there are
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10 Computing Noncommutative Deformations 111

p isomorphism classes of simple left R-modules, represented by {k1,ks,...,kp},
where k; =0 X --- X kX --- X 01is the ’th projection of ¥ for 1 <i < p.

We remark that any R € aj, is a'p X p matrix ring, in the sense that there are
p indecomposable idempotents {e1,...,e,} in R with e; +---+¢, = 1 and a de-
composition R = @R;;, given by R;; = e;Re;, such that elements of R multiply as
matrices. We shall therefore use matrix notation, and write R = (R;;) when R € ap,
and (V;;) = @V;j when {V;; : 1 < i, j < p} is any family of vector spaces.

For any R € ap, alifting of & to R is a quasi-coherent sheaf #, of left Z-modules
with a compatible right R-module structure, together with isomorphisms 1; : g ®r
k; — %; in QCoh(9) for 1 <i < p, such that Fg(U) = (#(U) Qk R;;) as right
R-modules for all open subsets U C X. We say that two liftings (&g, ;) and
(F4sm) are equivalent if there is an isomorphism 7 : g — F of Z-R bimod-
ules on X such that 1)/ o (T ®x k;) = 1; for 1 <i < p, and denote the set of equiva-
lence classes of liftings of & to R by Defg (R). This defines the noncommutative
deformation functor Def% : a,, — Sets. '

10.3 Computing Noncommutative Global Deformations

Let (X,2) be a D-scheme, and let U be an open affine cover of X that is finite
and closed under intersections. We shall explain how to compute noncommutative
deformations in QCoh(2) effectively using the open cover U.

We may consider U as a small category, where the objects are the open sub-
sets U € U, and the morphisms from U to V are the (opposite) inclusions U 2 V.
There is a natural forgetful functor QCoh(2) — PreSh(U, 2), where PreSh(U, 2)
is the Abelian k-category of (covariant) presheaves of left Z-modules on U. For any
finite family % in QCoh(2), this forgetful functor induces an isomorphism of non-
commutative deformation functors Def:’;- — Def g, where Deffé 1ap — Sets is the
noncommutative deformation functor of & in QCoh(2) defined in Sect. 10.2, and
Def & : ap — Sets is the noncommutative deformation functor of & in PreSh(U, 2),
defined in a similar way; see Eriksen [3] for details.

Theorem 10.1. Let (X, D) be a D-scheme, and let & = {F1,...,%p} be a finite
Samily in QCoh(9). If the global Hochschild cohomology

(HH"(U, 2, Homi(F, #:)))

has finite k-dimension for n = 1,2, then the noncommutative deformation functor -
Defq;- : ap — Sets has a pro-representing hull H = H(Z), completely determined
by (HH"(U, 2, Homy (%}, %;))) for n=1,2 and their generalized Massey products.

In fact, there is a constructive proof of the fact that Defg : a, — Sets of &
in PreSh(U, 2) has a pro-representing hull; see Eriksen [3] for details. The con-
struction uses the global Hochschild cohomology (HH"(U, 2, Homy(%;, %;))) for
n=1,2, and the obstruction calculus of Def &, which can be expressed in terms of
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generalized Massey products on these cohomology groups. We give a brief descrip-
tion of the global Hochschild cohomology and the obstruction calculus below.

10.3.1 Cohomology

For any presheaves %, % of left Z-modules on U, we recall the definition of global
Hochschild cohomology HH"(U, 2,Homy (% ,¥)) of 2 with values in the bimod-
ule Homy (& ,¥) on U. For any inclusion U 2 V in U, we consider the Hochschild
complex HC*(2(U),Homg(Z (U),¥4(V)) of 2(U) with values in the bimodule
Homy (F (U),%(V)). We define the category Mor U to have (opposite) inclusions
U DV in U as its objects, and nested inclusions U'DUDV 2DV inU as its mor-
phisms from U D V to U’ D V. It follows that we may consider the Hochschild

complex
HC*(2,Homy(Z,%)) : Mor U — Compl(k)

as a functor on Mor U. The global Hochschild complex is the total complex of the
double complex D** = D*(U,HC* (2, Homy(#,9))), where

D*(U,—) : PreSh(Mor U, k) — Compl(k)

is the resolving complex of the projective limit functor; see Laudal [4] for details.
We denote the global Hochschild complex by HC*(U, 2, Hom (£ ,¥)), and define
the global Hochschild cohomology HH" (U, 2, Homy(#,%)) to be its cohomology.

Note that H*(HC*(2(U),Homy(F (U),¥4(V)))) = Extg (F(U),9(V)) for

any U DV in U since k is a field. Hence there is a spectral sequence converging -

to the global Hochschild cohomology HH" (U, 2, Homy (£ ,%)) with
EP? = HP(U,ExtL(Z,9)), (10.1)

where H? (U, —) = H?(D* (U, —)) and Ext], (#,¥) : Mor U — Mod(k) is the functor
on Mor U given by {U DV} — Ext'lg(U) (Z(U),%4(V)) forallg > 0.

10.3.2 Obstruction Calculus

Let R € a,, and let I = I(R) be the radical of R. For any lifting S € Def#(R)
of the family % in PreSh(U, 2) to R, we have that #z(U) = (Fi(U) ® R;;) as
a right R-module for all U € U. Moreover, the lifting #5 is completely deter-
mined by the left multiplication of 2(U) on Fr(U) for all U € U and the re-
striction map Fg(U) — Fg(V) for all U DV in U. Let us write Q8(U,V) =
(Homy(Z;(U), F:(V) ®k Rij)) and QR (U) = QR(U,U) for all U 2 V in U. Then
Fr € Def (R) is completely described by the following data:

10 ¢

As
IK =
obst
asn
sible
Erik

Proj
Fs

such
gas i
(HH

I
0%(i

such

We ¢
to sa

10.

Let.
equs
assu
over



E. Eriksen

a brief descrip-
tlus below.

nition of global
s in the bimod-
the Hochschild
n the bimodule
isite) inclusions
in U as its mor-
the Hochschild

complex of the

| [4] for details.
%)), and define
its cohomology.
(U),¢(V)) for
mce converging
th

(10.1)

k) is the functor
).

Fr € Def z(R)
(U) 8¢ Ryj) a5
mpletely deter-
= U and the re-
ite QR(U,V) =
2V in U. Then

113

10 Computing Noncommutative Deformations

1. For all U € U, a k-algebra homomorphism L(U) : 2(U) — QF(U) satisfying
L(U)(P)(f;) =Pf;i®@ej+ (Fi(U) & ;) forall P € 9(U), f; € F;(U).

2. For all inclusions U 2 V in U, a restriction map L(U,V) € QR(U,V) satisfying
LU, V)(fj) = (filv) ®e; + (Fi(V) ®L;) for all f; € F;(U) and L(U,V) o
L(U)(P) =L(V)(Ply)oL(U,V) for all P € 2(U).

3. For all inclusions U 2V D W in U, L(V,W)L(U,V) =L(U,W) and L(U,U) =
id.

A small surjection in ap, is a surjective morphism u : R — S in a, such that
IK = KI = 0, where K = Ker(u) and I = I(R) is the radical of R. To describe the
obstruction calculus of Def &, it is enough to consider the following problem: Given
a small surjection  : R — S and a deformation Fg € Def 2(S), what are the pos-
sible liftings of &g to R? The answer is given by the following proposition; see
Eriksen [3] for details:

Proposition 10.1. Let u : R — S be a small surjection in ap with kernel K, and let
Fs € Def #(S) be a deformation. Then there exists a canonical obstruction

ou, Fs) € (HHX(U, 2, Homy(F;, F)) @cKi)

such that o(u, Fs) = 0 if and only if there is a deformation Fr € Def z(R) lifting
Fs to R. Moreover, if o(u, Fs) = 0, then there is a transitive and effective action of
(HH1 (U, 2,Homy (&}, Z:)) ®« Kij) on the set of liftings of Fs to R.

In fact, let F5 € Def £(S) be given by LS(U) : 2(U) — Q5(U) and L5(U,V) €
Q5(U,V) forall U DV in U, and let o : S — R be a k-linear section of u: R — §
such that o (e;) = ¢; and o(S;;) C Ryj for 1 <, j < p. We consider LX(U) : 9(U) —
QR(U) given by LR(U) = 6 o L5(U) and LR(U,V) = o(L5(U,V)) for al U DV
in U. The obstruction o(U, %s) for lifting Zs to R is given by

1. (P,Q) — LR(U)(PQ)—LR(U)(P)o LR(U)(Q) forall U € U and P,Q € 2(U)

2. P— IR(U,V) o LR(U)(P) — IR(V)(P|y) o LR(U,V) foral U DV in U, P €
2(U)

3. LR(V,W)oIR(U,V)—LR(U,W) foralU DV 2O WinU

We see that these expressions are exactly the obstructions for LR(U) and LR (U ,V)
to satisfy conditions (1)—(3) in the characterization of Def #(R) given above.

104 Calculations for D-Modules on Elliptic Curves

Let X C P? be the irreducible projective plane curve given by the homogeneous
equation f =0, where f = y2z—x3 —axz? — bz’ for fixed parameters (a,b) € k2. We
assume that A = 44> +27b% # 0, so that X is smooth and therefore an elliptic curve
over k. We shall compute the noncommutative deformations of €, considered as a
quasi-coherent left Zx-module via the natural left action of Zx on Oy.
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We choose an open affine cover U = {U1,U,,U3} of X closed under intersec-
tions, given by Uy = D4 (y), Uz = D4 (z) and Uz = U1 NUs. We recall that the open
subset D4 (h) C X is given by D4 (h) ={p € X : h(p) # 0} for h=yorh =z It
follows from the results in Sect. 10.3 that the noncommutative deformation func-
tor Def g, : a1 — Setshas a pro-representing hull H, completely determined by the
global Hochschild cohomology groups and some generalized Massey products on
them. We shall therefore compute HH"(U, 2,End;(0x)) forn =1,2.

It is known that P¢ (U) is a simple Noetherian ring of global dimension one and
that Ox(U) is a simple left P (U)-module for any open affine subset U C X; see
for instance Smith and Stafford {6]. Hence, the functor Extq@X (6%,0x) : Mor U —
Mod(k) satisfies Ext‘f%( (6x,0x) =0 for g > 2 and Endg, (6x) = k. Since the spec-
tral sequence for global Hochschild cohomology given in Sect. 10.3 degenerates,

HH"(U, 9%, Endi(6x)) = H* (U, Exty, (O, Ox)) forn > 1

HH’(U, 9x,Endi(6%)) =k
We compute Extl, . (Ox, Ox) and use the result to find H*~1(U, Extl, . (Ox,0x)) for
n=1,2.

Let A; = Ox(U;) and D; = Px(U;) for i = 1,2,3. We see that 4; = kix,z]/(f1)
and A; & kfx,y]/(f2), where f1 = =B —axz2—bz and for =y>—x° —ax—b.
Moreover, we have that Der(4;) = A;d; and D; = A;(d;) for i = 1,2, where

a1 = (1—2axz—3bz%) 3/x+ (3% +az) 99z
O =—2yd/dx—(3x*+a) d/dy

We choose an isomorphism A3 £ kfx,y,y']/(f3) with f3 = f on the intersection

Us = Uy NU,, and see that Der(A3) = A303 and D3 = A3(ds) for d3 = od». The

restriction maps of & and Py, considered as presheaves on U, are given by

x—xy~Y, 2y, 9 03

for the inclusion Uy 2 U3,‘ and the natural localization map for U, D Us. Finally, we
find a free resolution of A; as a left D;-module for i = 1,2,3, given by

0—A; —D; <X D; 0
and use this to compute Ext}, (A;,4;) = coker(di|y; : A; — A;) for U; 2 Uj in U.

We see that Extj, (A;,A3) = coker(ds : A3 — A3) is independent of i, and find the
following k-linear bases for Ext, (A;,4;):

a#0: a=0:
U2 Uy . 1,2,22,23 11Z7x7xz
U220, 1ay2 17x
Us 2 Us xzy—la lay—17y—21y—3 x'Zy——l, 17y—17x1xy_1
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The functor Extlgx (6x,6x) : Mor U — Mod(k) defines the diagram in Mod (k) be-
low, where the maps are induced by the restriction maps on Ox:

Ethl)l (Al 7A1 ) EthD2 (Az,Az)
Ext}, (A1,43) = Ext}, (A3,A3) === Ext}, (A2,A3)

We use that 15y> = A y~2 in Ext}33 (A3,A3) when a # 0 and that —3b w2=x
in Ext},3 (A3,A3) when a = 0 to describe these maps in the given bases. We com-.
pute H"‘I(U,Extlgx (6x,0%)) for n = 1,2 using the resolving complex D*(U,—);
see Laudal [4] for definitions. In particular, we identify HO(U,Ext_l@X(ﬁX,ﬁX))
with the set of all pairs (hy,h2) with ; € Extll)l. (A;,A;) that satisfies hi|y, = ha|us,
and we identify HI(U,Extlgx(ﬁx,ﬁx)) with the set of all pairs (hy3,h3) with
hij € Ext})‘. (A1,4;), modulo the pairs of the form (f1|u;, — h3,h2|u; — h3) for triples
(h1,h2,h3) with h; € Ext})i (A;,A;). We find the following k-linear bases:

a#0: a=0:

n=1 & =(1,1,1), & =(1,1,1),

&= (AZZ7 15y2aAy—2) 52 = (—3b X7, X, %)
n=2 o = (0,0,0,0,6ax?y~1) o = (0,0,0,0,x>y71)

We recall that &;,&; and o are represented by cocycles of degree p=0Oand p=1
in the resolving complex D*(U, Extl%( (Ox, O%)), where

DP(U,Exty, (Ox,0%)) = [ Extg, (Fx,6x)(Uo2Up)
. UOQ'"QUP

and the product is indexed by the set {U; 2 U,U> 2 U,,Us 2 Us} when p =0, and
{U1 2U1,U, 2 U, U3 2 Us,Uy 2 U3, U, D Us} when p=1.

This shows that for any elliptic curve X over k, the noncommutative deforma-
tion functor Defg, : aj — Sets of the left Px-module Ox has a two-dimensional
tangent space (since HH'(U, Zx,End(0%)) = k?), and a one-dimensional ob-
struction space (since HH?(U, Px,Endi(6x)) = k), and a pro-representing hull
H = k<t;, 13>/ (F) for some noncommutative power series F € k<11,

We shall compute the noncommutative power series F and the versal family
Zy € Def 5, (H) using the obstruction calculus for Defg, . We choose base vec-
tors £, £5 in HH (U, 2, Homy (6, Ox ), and representatives (¥, T) € D% @D of
tF for | = 1,2, where DP4 = DP(U,HC%(2,Endy(Jx))). We may choose v (U;) to
be the derivation defined by :
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0 if P, € A;

vi(U)(R) = {éz(Ui) -idy, if R =0

for I = 1,2 and i = 1,2,3, and 5(U; 2 Uj) to be the multiplication operator in
Homy, (A;,A;) 2 A; given by 7, = 0, (Ui 2U;) =0fori=1,2,3 and

a#0: a=0:
(U1 2Us)=0 ) 2(U1 2Us) =2y~
7 (U2 2 Us) = —4a*y~! — 35y 4 9bxy~! — 6axy~! (U2 2U3) =0

Let a; (n) be the full subcategory of a; consisting of all R such that I(R)" = 0 for
n > 2. The restriction of Defﬁ); i@y — Sets to a;(2) is represented by (H2, Zw,),
where Hy = k(t1,12) /(t1,%2)* and the deformation Fp, € Def oy (Hy) is defined by
Fw, (U;) = A; ® H, as a right H-module for i = 1,2,3, with left D;-module struc-
ture given by '

FBi(m: @ 1) = Bi(mi) © 1+ y1 (U (B) (i) @11 + v (U3) (By) () @ 1

fori=1,2,3 and forall P, € D;, m; € A;, and with restriction map for the inclusion
U; 2 U; given by

mi® 1 — mily, ® 14-1(U; 2 U;) mily, ®t

fori=1,2, j=3 and for all m; €A,
We try to lift the family Fy, € Defg, (Hy) to R = k<ty, 1> /(t1,82)3. We let

ZFr(U;) = A; ® R as a right R-module for i = 1,2,3, with left D;-module structure
given by

Bi(m; @ 1) = Pi(m:) @ L+ (U) (B) (ms) @ 1+ v (U) (B) (ms) @11

fori=1,2,3 and forall P, D;, m; € A;, and with restriction map for the inclusion
U; 2 U;j given by

(Ui 2U;)?
2

fori=1,2, j=3 and for all m; € A;. We see that Zr(U;) is a left Dy (U;)-module
fori= 1,2,3, and that ity —tt; = 0 is a necessary and sufficient condition for
Dx-linearity of the restriction maps for the inclusions Uy D U; and U, D Us. This
implies that £y is not a lifting of Fy, to R. But if we define the quotient H3 =
R/(t1t2 —t211), we see that the family Zn, € Def g, (H3) induced by Zy is a lifting
of 9}12 to Hs.

- Infact, we claim that the restriction of Def 0y * a1 — Sets to a;(3) is represented
by (Hs, Z1,). One way to prove this is to show that it is not possible to find any lift-
ing Fy, € Def g, (R) of Fg, to R. Another approach is to calculate the cup products
< z‘i*,z‘}k > in global Hochschild cohomology for i,7=1,2, and this gives

mi® L mily; ® 1+ 5(U; 2 Uj) mily, @1, + mily; 15
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10 Computin,
<t >=0", <t,tf >=—0" fora#0
<#,5 >=0%, <f,f{ >=—0" fora=0

where o* € HH2(U, Zx,Endi(Ox)) is the base vector corresponding to @. This im-
lies that F = t1t —tat1 + (1, 12)3, since all other cup products vanish.
Let H = k<t 12>/ (t1t2 — t2t1). We shall show that it is possible to find a lifting
Fy € Def g, (H) of Fpy to H. We let Z5(U;) = A;&H as a right H-module for
i=1,2,3, with left D;-module structure given by ’

P(m; ® 1) = Bi(m:) ® 1+ w1 (Us) (P) (m:) @11 + W2 (U) (By) (m;) @ 1

fori=1,2,3 and for all ; € Z;, m; € A;, and with restriction map for the inclusion
U; 2 Uj given by
> U 2U;)"
m®l— Z —2—(—15——1)— mllUj Q1 = exp(n(U; 2 Uj) n)- (mllUj ®1)
n=0 )

for i = 1,2, j =3 and for all m; € A;. This implies that (H,%y) is the pro-
representing hull of Def gy, and that F = 1, —fpt1. We remark that the versal family
Fx does not admit an algebraization, i.e. an algebra Hag of finite type over k such
that H is a completion of Hyg, together with a deformation in Def s, (Hayg) that
induces the versal family #y € Defg, (H).’

Finally, we mention that there is an algorithm for computing the pro-representing
hull H and the versal family %y using the cup products and higher generalized
Massey products on global Hochschild cohomology. We shall describe this algo-
rithm in a forthcoming paper. In many situations, it is necessary to use the full
power of this machinery to compute noncommutative deformation functors.
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