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Notations and Conventions

A ring is always assumed to be an associative ring with 1, but not necessarily
commutative. All ring homomorphisms are supposed to preserve 1, and a subring
means a subring with (the same) unit. An ideal always means a two-sided ideal.
All modules are assumed to be unitary. As far as possible, we try to use letters
such as A,B,C to denote commutative rings, D,E, F to denote rings of differential
operators, and R,S, T to denote other associative rings.

The letter k is reserved for a fixed, algebraically closed field of characteristic 0.
A k-algebra R means a ring R with a structural ring homomorphism k → R such
that the image of k is in the centre of R. We shall always identify k with its image
under this map.

As usual, k[x1, . . . , xn] denotes the polynomial ring in n commuting variables,
and similarly k[[x1, . . . , xn]] the ring of formal power-series in n commuting vari-
ables. We will use the notation k{x1, . . . , xn} and k{{x1, . . . , xn}} to denote their
non-commutative counterparts: The free, associative k-algebra on n symbols and
the ring of formal power-series in n non-commuting variables.

The opposite ring of a ring R is denotedRop. All functors are covariant functors,
unless the opposite is explicitly stated. For a family {Vij}1≤i,j≤n of k-vector spaces,
we use matrix notation and write (Vij) for the direct sum (Vij) = ⊕Vij .

We denote by ACC the ascending chain condition, and by DCC the descending
chain condition. Let R be a ring. We say that a left or right R-module M is
Artinian (Noetherian) if it satisfies the DCC (ACC) on its submodules. We say
that the ring R is left Artinian (Noetherian) if it is Artinian (Noetherian) as left
R-module, and that it is right Artinian (Noetherian) if it is Artinian (Noetherian)
as right R-module. We say that R is Artinian (Noetherian) if it is both left and
right Artinian (Noetherian).

We write C for the set of complex numbers, Q for the set of rationals, Z for
the set of integers and N0 for the set of natural numbers including 0.
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Introduction

In algebraic geometry, there is a well-developed theory of differential structures
on smooth algebraic varieties in characteristic 0. This theory is, of course, strongly
influenced by the corresponding analytic theory. It contains the theory of integrable
connections and the theory of D-modules. The aim of this work is to contribute
to the understanding of differential structures on singular algebraic varieties in
characteristic 0.

Let k be an algebraically closed field of characteristic 0 and let A be a reduced,
commutative k-algebra of finte type, corresponding to an affine algebraic variety
X = SpecA. We are interested in differential structures on X.

In particular, we consider the following special case: Let Γ ⊆ N0 be a numerical
semigroup. That is, let Γ be a subset of N0 which contains 0 and is closed under
addition, such that N0\Γ is a finite set. We let A = k[Γ] denote the corresponding k-
algebra, which is defined as the k-subalgebra of k[t] with k-linear basis {tγ : γ ∈ Γ}.
The corresponding affine algebraic variety XΓ = SpecA is a curve, and we call XΓ
the monomial curve corresponding to Γ.

The definition of the ring of k-linear differential operators on a smooth alge-
braic variety X over k was generalized by Grothendieck. Grothendieck’s definition
appeared in full generality in Grothendieck [15], and we shall refer to it in the
special case when X is an affine algebraic variety X = SpecA over k: We let
D = D(X) = D(A) be the k-subalgebra of Endk(A) given by

D(A) =
⋃
p∈Z

Dp(A),

where Dp(A) is the k-linear subspace of Endk(A) given in the following way: When
p < 0, Dp(A) = 0. and when p ≥ 0, Dp(A) consists of the k-linear endomorphisms
P ∈ Endk(A) such that the commutator [P, a] ∈ Dp−1(A) for all a ∈ A. In
particular, D(A) is an associative subring of Endk(A), and we call it the ring of
k-linear differential operators on A (or X).

In general, we have D0(A) = A, where the elements of A are considered as k-
linear operators on A by left multiplication, and D1(A) = A⊕Derk(A). We denote
by ∆(A) the subring of D(A) generated by the differential operators in D1(A). It is
well-known that if A is a regular k-algebra, or equivalently if X is a smooth variety,
then ∆(A) = D(A). It is believed that regularity is essential for this to happen,
and Nakai’s conjecture states that if A is an integral domain, then ∆(A) = D(A)
if and only if A is regular. Nakai’s conjecture holds if X is a curve, see Mount and
Villamajor [25]. For higher dimensions, the problem is still open.

Let X be an affine algebraic variety, and let A be the affine coordinate ring of
X. We consider the following problems:

A: Let D = D(X) the the ring of diffential operators on X, and denote by
a D-module any left D-module which is finitely generated. Classify all D-
modules with certain given properties.

B: A module with covariant derivative is a couple (M,∇), where M is an
A-module and ∇ : Derk(A) → Endk(M) is an A-linear map such that

1



INTRODUCTION 2

∇D(am) = a∇D(m) +D(a)m for all D ∈ Derk(A), a ∈ A, m ∈M . We say
that the covariant derivative ∇ is integrable or flat if ∇ is a homomorphism
of k-Lie algebras. Classify all couples (M,∇) of modules with integrable
covariant derivative with certain given properties.

When X is smooth, problem A and problem B are equivalent. However, they
are different in an essential way when X is singular, and in this thesis, we shall
consider problem A and B for a monomial curve XΓ.

Let us first consider problem A. It is well-known that the ring D = D(A) is
not well-behaved when A is the affine coordinate ring of a general affine variety. In
fact, it was shown in Bernstein, Gelfand and Gelfand [2] that when X is the cubic
cone

X = V (x3 + y3 + z3) ⊆ C3,

then D = D(X) is not a finitely generated k-algebra, and D is neither left nor
right Noetherian. However, in the case of curves, the situation is much better. The
following theorems were shown in Smith and Stafford [32]:

Theorem 0.1 (Smith, Stafford). Let X be an irreducible affine algebraic variety
over an algebraically closed field k of characteristic 0, and let A be the affine coor-
dinate ring of X. Then the following conditions are equivalent:

i) The normalization map X → X is injective.
ii) D(A) is a simple ring.

iii) A is a simple left D(A)-module.
iv) D(A) is Morita-equivalent to D(A).

Theorem 0.2 (Smith, Stafford). Let X be an irreducible affine algebraic variety
over an algebraically closed field k of characteristic 0, and let A be the affine coor-
dinate ring of X. If the normalization map X → X is injective, then D(A) has the
following properties:

i) D(A) is a finitely generated k-algebra.
ii) D(A) is a Noetherian ring.

iii) D(A) has Krull dimension 1 and Gelfand-Kirillov dimension 2.
iv) D(A) is an hereditary ring.

A main technique used by Smith and Stafford was to compare the rings of
differential operators D(X) and D(X). When X is an affine variety of higher
dimension, these rings are related, and this is useful when X is smooth. But for
curves, the relationship between D(X) and D(X) is very close, and this is the idea
behind much of the work on the ring of differential operators on curves. In the
special case of monomial curves, we see that X = A1 and the normalization map is
a bijection. So for any monomial curve XΓ, there are very strong structural results
on the ring D = D(X). Moreover, D(X) = A1(k), the first Weyl algebra. This is
the associative k-algebra generated by x and ∂, which has the relation ∂x−x∂ = 1.
A lot of consideration has been given to this ring, in particular in Dixmier [11, 12],
and Block [4].

In a joint work with Henrik Vosegaard, we have obtained a very explicit de-
scription of the ring structure of D = D(X) when X is a monomial curve. The ring
D(X) possesses a graded structure, inherited from the graded structure of the affine
coordinate ring A of X, and our description of D relies on this graded structure.
It has recently been brought to our attention that some of our results had already
been obtained by Jones in his PhD thesis Jones [17].

We develop some new results on Hilbert functions of graded modules over
graded k-algebras not necessarily generated in degree 1. Using these results, we are
able to define the dimension and multiplicity of D-modules over monomial curves.
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We show that Bernstein’s equation d(M) ≥ 1 holds for all non-zero D-modules M ,
where d(M) is the dimension of M , and we define a holonomic D-module M to be
a D-module M such that M = 0 or such that M 6= 0 and d(M) = 1. Furthermore,
we are able to prove that the category of holonomic D-modules and the category of
Artinian D-modules coincide when D = D(X) for a monomial curve X. The proof
is similar to the proof of the corresponding result for the Weyl algebra A1(k).

The main result in the direction of problem A, is the classification of the graded,
holonomic D-modules which are indecomposable. We have obtained the following
result (see below for the notation used in the theorem):

Theorem 0.3. Let X be a monomial curve, and let D = D(X) be the ring of
differential operators on X. The set of equivalence classes of graded, holonomic
D-modules which are indecomposable, up to graded isomorphisms of degree 0 and
twists, are given by

{M(α, n) : α ∈ I∗, n ≥ 1} ∪ {MA(n) : n ≥ 1} ∪ {MB(n) : n ≥ 1}.
where I ⊆ k is a subset containing 0 such that the natural quotient map I → k/Z
is a bijection, and I∗ = I \ {0}.

Assume that X = A1 and let D = A1(k). Then the indecomposable, graded,
holonomic D-modules are explicitly given in the following way: For all α ∈ I∗ and
n ≥ 1, we have M(α, n) = D/D(E−α)n. If n ≥ 1 is an even number with n = 2m,
then MA(n) = D/D(t∂)m and MB(n) = D/D(∂t)m. If n ≥ 1 is an odd number
with n = 2m + 1, then MA(n) = D/D∂(t∂)m and MB(n) = D/Dt(∂t)m. In the
general case, when X is a monomial curve, the graded, holonomic, indecomposable
D-modules over X are given by the Morita equivalence between D(X) and A1(k).

Let D′ be the corresponding ring of differential operators in the local ana-
lytic category. More explicitly, let D′ be given as D′ = C[∂], where C is the ring
of germs of analytic functions on C. There is a classification of indecomposable,
holonomic D′-modules with regular singularities, see Briançon and Maisonobe [7].
We observe that the indecomposable, graded, holonomic D-modules over a mono-
mial curve correspond exactly to the indecomposable, holonomic D′-modules with
regular singularities in the local analytic category.

Let M = {M1, . . . ,Mp} be a finite family of non-isomorphic D-modules. We
define an extension of extensions of the family M to be a couple (M,C), where M
is a D-module, and C = (Ci) is a co-filtration of M of length n such that

ker(Ci → Ci−1) ∼= Mli

for 1 ≤ i ≤ n. Let G be the ordered, directed graph associated with (M,C) in the
following way: Let the nodes of G be N = {1, 2, . . . , p}, and let the edges of G be
E = {a1, . . . , an−1}, where ai is an edge from node li to node li+1 for 1 ≤ i ≤ n−1,
and where the total order of E is given by a1 < · · · < an−1. The graph G is called
the extension type of (M,C), and we say that a D-module M has extension type
G if there exists a co-filtration C such that (M,C) is an extension of extensions of
M with extension type G.

There is a non-commutative deformation theory, due to Laudal, which is de-
scribed in Laudal [21, 22]. Using this deformation theory, it is possible to construct
a family M(M,G) of D-modules containing all D-modules which are extensions of
extensions of the family M with extension type G. We have used this construction
to show the above classification result when X = A1. In the general case, when
D = D(X) for a monomial curve X, we have used the Morita equivalence between
D and A1(k) to complete the classification.

In the direction of problem B, let X be a Gorenstein monomial curve. We
have shown the following existence result for modules with integrable covariant
derivative on X:



INTRODUCTION 4

Theorem 0.4. Let X be a Gorenstein monomial curve, and let A be the affine
coordinate ring of X. For any graded, torsion free A-module M of rank 1, there
exists an integrable covariant derivative ∇ on M .

In Chapter 1, we give the basic definitions of rings of differential operators,
following Grothendieck. We also mention some elementary properties of rings of
differential operators for later reference. Most of these results are well-known in
the literature.

In Chapter 2, we study the ring of differential operators on monomial curves.
We obtain a very explicit description of the ring of differential operators, the associ-
ated graded ring, and the module of derivations. We also obtain information about
generators in all these cases, and for the associated graded ring and the module of
derivations, we find minimal generating set. The work described in this chapter is
joint work with Henrik Vosegaard. Some of the results in this chapter can also be
found in Jones [17].

In Chapter 3, we study modules over the ring D = D(X) of differential
operators on a monomial curve. We show that any D-module has a dimension
and a multiplicity. We generalize classical results on Hilbert functions on graded
modules in order to make these definitions. We also generalize some localization
procedures used in Block [4] to prepare the classification of all simple, graded D-
modules.

In Chapter 4, we study modules with connection. We define modules with
connections, modules with covariant derivative and modules with g-connections for
a Lie-Cartan pair (A,g). We also develop the obstruction theory for connections
and g-connections on a given A-module M , following Laudal. Finally, we show
that any graded, torsion-free A-module M of rank 1 over a monomial curve has an
integrable covariant derivative.

In Chapter 5, we give an introduction to a non-commutative deformation
theory, following Laudal. In particular, we define a deformation functor DefM on
the category ap of p-pointed Artinian k-algebras, which describes the simultaneous
deformations of a finite family of modules. We also show that this functor has
a pro-representing hull H(M), and we construct this hull using the obstruction
morphism o : T2 → T1. In the last section, we use non-commutative deformation
theory to construct a family M(M,G) of D-modules which contains all extensions
of extensions of the finite family M with fixed extension type G.

In Chapter 6, we study graded, holonomic modules over the Weyl algebra
A1(k). First, we use the results from chapter 3 to classify all simple, graded A1(k)-
modules. Then, we use methods from chapter 5 to classify all graded, holonomic
and indecomposable A1(k)-modules.

In Chapter 7, we study graded, holonomic D-modules over a monomial curve
X. We use the Morita equivalence betweeen D and A1(k) to classify all graded,
holonomic and indecomposable D-modules.

In Appendix A, we describe Hochschild cohomology. We also show the rela-
tionship between Hochschild cohomology and Ext groups.



CHAPTER 1

Rings of differential operators

In this chapter, we shall define the filtered k-algebra D(A) of k-linear differential
operators on a commutative k-algebra A, following Grothendieck [15]. We shall also
recall some elementary properties of the ring of differential operators D(A) and its
associated graded ring gr D(A). Although most of these results are well-known,
there are some which, as far as we know, do not appear in the literature. We
remind the reader that in this chapter, all rings denoted A,B,C are assumed to be
commutative.

Our main references for this chapter are the following: Grothendieck [15],
Másson [23], Smith and Stafford [32] and Muhasky [26].

1. Basic definitions

Let A be a commutative k-algebra. We denote by Endk(A) the vector space
of k-linear endomorphisms of A, and consider each φ ∈ Endk(A) as a left operator
on A. The k-vector space Endk(A) has an associative k-algebra structure, with
multiplication given by composition of left operators. Furthermore, there is a left
operator La ∈ Endk(A) for all a ∈ A, given by left multiplication by a, and a 7→ La
induces an inclusion of k-algebras A→ Endk(A). We shall always identify A with
its image under this inclusion.

We denote by Derk(A) the set of endomorphisms φ ∈ Endk(A) which fulfill the
Leibniz rule φ(ab) = aφ(b) + φ(a)b for all a, b ∈ A. It is clear that Derk(A) is a left
A-submodule of Endk(A). Let [φ, ψ] = φψ − ψφ for all φ, ψ ∈ Endk(A) denote the
Lie product in Endk(A). Then we see that Derk(A) is closed under the Lie product.

Following Grothendieck [15], we let D(A) ⊆ Endk(A) be the subring of left
operators on A given in the following way: We define Dp(A) = 0 for p < 0, and
recursively define

Dp(A) = {φ ∈ Endk(A) : [φ, a] ∈ Dp−1(A) for all a ∈ A}

for p ≥ 0. It follows that Dp(A) is a k-linear subspace of Endk(A) for all p ≥ 0. The
equality D0(A) = A is clear. Furthermore, the decomposition P = P (1)+(P−P (1))
gives D1(A) = A⊕Derk(A), and an induction argument gives

Dp(A) Dq(A) ⊆ Dp+q(A)

for all integers p, q. We define D(A) = ∪Dp(A), which is an associative k-subalgebra
of Endk(A) by the previous remark. We refer to this ring as the ring of differential
operators on A, and we refer to operators P ∈ D(A) as differential operators.

Notice that the expression P (a) has several possible interpretations for a differ-
ential operator P ∈ D(A) and an element a ∈ A: Either as the left action of P on
a, or as the composition of P and a considered as differential operators. We shall
therefore write P ∗ a for the left action of P ∈ D(A) on a ∈ A, and P (a) or Pa for
the composition of these considered as differential operators. Using this notation,
we write the decomposition given above as P = P ∗ 1 + (P −P ∗ 1) for P ∈ D1(A).

For all integers p, let Derp(A) denote the set of differential operators P ∈ Dp(A)
such that P ∗ 1 = 0. Then, Derp(A) ⊆ Dp(A) is k-linear subspace consisting of

5



2. PRINCIPAL PARTS AND FURTHER DEFINITIONS 6

the high order derivations of order p in the sense of Nakai [28]. It is clear that
Derp(A) = 0 for p ≤ 0 and that Der1(A) = Derk(A). Furthermore, we have
that Dp(A) = A⊕Derp(A) for all integers p ≥ 0: For any differential operator
P ∈ Dp(A), we have P = P ∗ 1 + (P −P ∗ 1) with P ∗ 1 ∈ A, P −P ∗ 1 ∈ Derp(A),
and we easily check that A ∩Derp(A) = 0 in Dp(A).

From the definition, we see that Dp(A) ⊆ Dp+1(A) for all integers p. So the
subspaces Dp(A) form an ascending filtration of D(A), called the order filtration,
and D(A) is a filtered k-algebra. We say that a differential operator P ∈ D(A) has
order p if P ∈ Dp(A), but P 6∈ Dp−1(A). So every differential operator P 6= 0 has
a uniquely defined order d(P ) = p, which is a non-negative integer. By convention,
d(P ) = −∞ if P = 0.

Lemma 1.1. For all differential operators P,Q ∈ D(A), we have
i) d(P +Q) ≤ max{d(P ), d(Q)},

ii) d(PQ) ≤ d(P ) + d(Q),
iii) d([P,Q]) ≤ d(P ) + d(Q)− 1.

Proof. The first 2 inequalities are clear. For the third, the Jacobi identity of the
Lie product gives the equation

[[P,Q], a] = [P, [Q, a]] + [[P, a], Q]

for all a ∈ A. So by induction on n = d(P ) + d(Q), the result follows, the case
n = 0 (and indeed n < 0) being trivial.

Let gr D(A) denote the associated graded k-algebra associated with the order
filtration of D(A). That is,

gr D(A) = ⊕
p

Dp(A)/Dp−1(A).

This is a Z-graded k-algebra, and by the last part of lemma 1.1, it is commutative.
We shall denote the graded component of degree p by grp D(A) = Dp(A)/Dp−1(A).
Clearly, gr0 D(A) = A, and gr D(A) is positively graded. In section 5, we shall see
that there is a stronger version of lemma 1.1, which will describe the structure of
gr D(A) in more detail. This result is given in proposition 1.13.

2. Principal parts and further definitions

Let µ : A ⊗k A → A denote the k-linear multiplication map µ(a ⊗ b) = ab for
a, b ∈ A. It is a surjective morphism of k-algebras, and we denote by J ⊆ A ⊗k A
the kernel of this morphism. Let j1, j2 : A→ A⊗k A be the natural sections of µ,
given by j1(a) = 1⊗ a and j2(a) = a⊗ 1 for a ∈ A.

We define the p’th principal part of A over k to be the k-algebra given by
Pp(A/k) = (A ⊗k A)/Jp+1 for all p ≥ 0. Notice that there are two natural k-
algebra homomorphisms from A to Pp(A/k): These are the compositions of j1 and
j2 with the canonical quotient map A⊗k A→ Pp(A/k). We shall always consider
Pp(A/k) as an A-module via the morphism A → Pp(A/k) induced by j2, and we
shall denote by dp(A/k) : A→ Pp(A/k) the morphism induced by j1. Notice that
this morphism is not A-linear, but only k-linear.

Proposition 1.2. Let P ∈ Endk(A) be an endomorphism, and p ≥ 0 some integer.
Then P ∈ Dp(A) if and only if there is an A-linear map P ′ : Pp(A/k) → A such
that P ′ ◦ dp(A/k) = P . In particular, there is an isomorphism of k-vector spaces
HomA(Pp(A/k), A)→ Dp(A) induced by dp(A/k).

Proof. See Grothendieck [15], proposition 16.8.8.
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Let M,N be left A-modules, and consider Homk(M,N) as an A-A bimodule
in the natural way. Then we may form the bracket [φ, a] = φa−aφ ∈ Homk(M,N)
for all φ ∈ Homk(M,N), a ∈ A. We define the differential operators from M to
N in the following way: Let Dp(M,N) = 0 for p < 0, and let Dp(M,N) be given
recursively by

Dp(M,N) = {φ ∈ Homk(M,N) : [φ, a] ∈ Dp−1(M,N) for all a ∈ A}
for p ≥ 0. Clearly, Dp(M,N) are k-linear subspaces of Homk(M,N) for all integers
p, and by an induction argument, the composition of homomorphisms is such that

Dq(N,P ) Dp(M,N) ⊆ Dp+q(M,P )

for all left A-modules M,N,P and all integers p, q.
We define D(M,N) = ∪Dp(M,N) for all left A-modules M,N . We refer to

it as the module of differential operators from M to N , and we refer to operators
P ∈ D(M,N) as differential operators from M to N . Notice that the notion of
a differential operator from M to N does depend on the ring A, even if this is
suppressed from the notation. We shall sometimes write DA(M,N) for D(M,N)
to emphasize that M,N are considered as left A-modules, and similarly Dp

A(M,N)
for Dp(M,N).

Let f : A → B be a homomorphism of k-algebras, and let M,N be left B-
modules. Then M,N are left A-modules via f , in the sense that am = f(a)m and
an = f(a)n for all a ∈ A, m ∈ M, n ∈ N . An induction argument shows that
there is an inclusion of Abelian groups DB(M,N) ⊆ DA(M,N), and equality holds
if f is surjective.

For simplicity, we shall write D(M) for D(M,M). It is clear that D(M) is a
k-algebra in Endk(M). Furthermore, the k-linear subspaces Dp(M) = Dp(M,M)
form an ascending filtration of D(M), called the order filtration, and D(M) is a
filtered k-algebra. We also see that D(M,N) is a D(N)-D(M) bimodule, and that
the linear subspaces Dp(M,N) form an ascending filtration of D(M,N), also called
the order filtration. Consequently, D(M,N) is a filtered bimodule.

We say that a differential operator P ∈ D(M,N) has order p if P ∈ Dp(M,N)
but P 6∈ Dp−1(M,N). So every non-zero differential operator P ∈ D(M,N) has a
uniquely defined order d(P ) = p, which is a non-negative integer. By convention,
d(P ) = −∞ if P = 0. We also see that D0(M,N) = HomA(M,N), and that
D(M,N) = 0 if and only if HomA(M,N) = 0.

Proposition 1.3. Let M,N be left A-modules, P ∈ Homk(M,N) be a homomor-
phism, and p ≥ 0 an integer. Then P ∈ Dp(M,N) if and only if there is an A-linear
map P ′ : Pp(A/k)⊗AM → N such that P ′ ◦ (dp(A/k)⊗A idM ) = P . In particular,
there is an isomorphism of k-vector spaces HomA(Pp(A/k)⊗AM,N)→ Dp(M,N)
induced by dp(A/k).

Proof. See Grothendieck [15], proposition 16.8.8.

We end this section with some remarks: First, assume that N ⊆ M is an
inclusion of left A-modules. Then we have that

D(M,N) = {P ∈ D(M) : P ∗M ⊆ N}.
In particular, we see that D(A,K) = {P ∈ D(A) : P ∗A ⊆ K} for all ideals K ⊆ A.
Secondly, notice that for all left A-modules M,N , there are functors

D(−, N) : A- Mod→ D(N)- Mod,

D(M,−) : A- Mod→ Mod - D(M),

the first contravariant, the second covariant. These functors are left exact. Fur-
thermore, their images are in the corresponding filtered module categories.
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3. Localization of algebras

Let A be a commutative k-algebra, and let S ⊆ A be a multiplicatively closed
subset. Consider the k-algebra homomorphism f : A → S−1A, where f is given
by localization. There is a unique extension of differential operators in D(A) to
differential operators in D(S−1A). Explicit formulas for this were first given by
Hart [16] for the case of integral domains, and then by Muhasky [26] for the
general case.

Let us denote by ad : D(A) → Endk(D(A)) the k-linear operator given by the
equation

ad(P )(Q) = [P,Q]

for all P,Q ∈ D(A). Using this notation, with the convention that ad(P )0 = id, we
obtain the following result:

Proposition 1.4. Let P ∈ D(A) be a differential operator of order d(P ) = p ≥ 0.
Then, for all a ∈ A, s ∈ S, the formula

P ∗ (a/s) =
p∑
i=0

ad(s)i(P ) ∗ (a)/si+1

defines a differential operator P ∈ Dp(S−1A), such that P ∗ f(a) = f(P ∗ a) for
all a ∈ A. Furthermore, the map D(f) : D(A) → D(S−1A) given by P 7→ P
is a homomorphism of filtered k-algebras, and its restriction to A ⊆ D(A) is the
localization map f : A→ S−1A.

Proof. See Muhasky [26], lemma 1.5 and 1.6.

In his thesis, Másson [23] gave the following generalization of this result: Let
f : A→ B be a formally étale homomorphism of k-algebras. Then f induces a ho-
momorphism of filtered k-algebras D(f) : D(A) → D(B), and this homomorphism
is characterized by the property that

D(f)(P ) ∗ f(a) = f(P ∗ a)

for all differential operators P ∈ D(A) and all elements a ∈ A. See Másson [23],
theorem 2.2.5 for a proof of this generalization.

We recall the definition of non-commutative localization: Let R be an associa-
tive ring, and S ⊆ R a multiplicatively closed subset. A left ring of fractions of R
with respect to S is a ring R′ together with a ring homomorphism φ : R→ R′ such
that the following conditions hold:

1. For all s ∈ S, φ(s) is invertible in R′.
2. Every element of R′ is of the form φ(s)−1φ(r) with r ∈ R, s ∈ S.
3. We have φ(r) = 0 if and only if sr = 0 for some s ∈ S.

We define a right ring of fractions similarly. Notice that if there is a (left or right)
ring of fractions, it is unique up to unique isomorphism. We say that R′ is a ring
of fractions of R with respect to S if it is a left and right ring of fractions of R with
respect to S. In this case, we shall denote R′ by S−1R.

Proposition 1.5. Let A be a commutative k-algebra of finite type, S ⊆ A be a
multiplicatively closed subset, and f : A→ S−1A be the localization map. Then the
k-algebra homomorphism D(f) : D(A) → D(S−1A) is a ring of fractions of D(A)
with respect to S. In particular, there is an isomorphism of S−1A-D(A) bimodules

S−1A⊗A D(A)→ D(S−1A).
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Proof. See Muhasky [26], proposition 1.9, or Másson [23], theorem 2.2.10. Notice
that the latter proof also holds if f : A → B is any formally étale homomorphism
of commutative k-algebras and Pp(A/k) is finitely presented as left A-module for
all integers p.

We remark that the localization map f is injective if and only if S does not
contain any zero-divisors. Furthermore, f is injective if and only if the k-algebra
homomorphism D(f) : D(A) → D(S−1A) is injective. This follows from Másson
[23], corollary 2.2.6, which in fact shows that a similar result holds for any formally
étale homomorphism of commutative k-algebras f : A→ B.

Corollary 1.6. Let A be a commutative k-algebra, S ⊆ A a multiplicatively closed
subset, and f : A → S−1A the localization map. Assume that S does not contain
any zero-divisors. Then D(f) induces an isomorphism

D(A) ∼= {P ∈ D(S−1A) : P ∗A ⊆ A}(1)

of filtered k-algebras.

Proof. See Másson [23], corollary 2.2.6. Notice that the proof also holds for any
injective, formally étale homomorphism f : A→ B of commutative k-algebras.

4. Quotient algebras

Let f : A→ B be a surjective homomorphism of commutative k-algebras, and
let K = ker(f) denote its kernel. Let furthermore P ∈ Endk(A) be a k-linear
operator. Then P defines a k-linear operator P ∈ Endk(B) given by the equation
P ∗ f(a) = f(P ∗ a) for all a ∈ A if and only if P ∗K ⊆ K. In this case, P = 0 in
Endk(B) if and only if P ∗A ⊆ K.

So let us assume that P ∈ Dp(A) is a differential operator such that P ∗K ⊆ K.
Then P ∈ Dp(B) is also a differential operator by induction on p. Consequently,
there is an exact sequence of k-linear spaces

0→ D(A,K)→ {P ∈ D(A) : P ∗K ⊆ K} f
∗

→ D(B),

where f∗ is the homomorphism of filtered k-algebras given by f∗(P ) = P . When
D(A) is better understood than D(B) and f∗ is surjective, this gives a useful de-
scription of D(B). We shall see that this happens in many interesting cases.

We remark that D(A,K) is a right ideal in D(A), and there is an obvious
inclusion of right ideals K D(A) ⊆ D(A,K). If A ⊗k A is a Noetherian ring and
Pp(A/k) is projective as a left A-module for all integers p, then D(A,K) = K D(A),
see Smith and Stafford [32], section 1.3 (e). We observe that if A is a free, com-
mutative k-algebra, equality holds as well:

Lemma 1.7. Let A be a free, commutative k-algebra. Then D(A,K) = K D(A).

Proof. We refer to the start of section 5 for the notation in this proof, and also
for the description of Dp(A) (which is elementary). So let A be a free, commutative
k-algebra on the symbols X, and let P ∈ D(A,K) be a differential operator of
order d(P ) = p. Then, P ∈ F p, where F p is as described in section 5, and we have
that P =

∑
aI∂

I , with aI ∈ A for all multi-indices I. We shall prove that aI ∈ K
for all I: Assume that J is a multi-index such that aJ 6∈ K and furthermore that
deg(J) is minimal among the multi-indices with this property. Then we have that
P ∗ xJ ∈ K, and a calculation shows that

P ∗ xJ =
∑
I

aI(∂I ∗ xJ ) = J !aJ +
∑
I<J

J !/(J − I)! aIxJ−I .

By the minimality of J , the last sum is in K and this is a contradiction. It follows
that P ∈ K D(A).
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We recall the notion of the idealiser of a right ideal J in an associative ring R:
This is the ring I(J) = {r ∈ R : rJ ⊆ J} ⊆ R, and it can be characterized as the
largest subring of R containing J as an ideal.

Lemma 1.8. Assume that D(A,K) = K D(A) for an ideal K ⊆ A. Then the
equality I(K D(A)) = {P ∈ D(A) : P ∗K ⊆ K} holds.

Proof. Assume that P ∈ I(K D(A)). Then Px ∈ K D(A) for all x ∈ K, since
K ⊆ K D(A). But then P ∗x = Px∗1 ⊆ K D(A)∗1 ⊆ K for all x ∈ K, so P ∗K ⊆ K.
Conversely, assume that P ∗ K ⊆ K. Then, for all x ∈ K, a ∈ A, we have that
P ∗ (xa) ∈ K from the assumption. But P ∗ (xa) = (Px) ∗ a, so (Px) ∗ A ⊆ K for
all x ∈ K. Consequently, Px ∈ D(A,K) = K D(A), and PK D(A) ⊆ K D(A).

From lemma 1.8 and the preceding comment together with lemma 1.7, we see
that if A is a free, commutative k-algebra, or A is such that A⊗k A is Noetherian
and Pp(A/k) is a projective A-module for all integers p, then there is a injective
k-algebra homomorphism of filtered k-algebras f∗ : I(K D(A))/K D(A) → D(B).
The filtration of I(K D(A))/K D(A) is the natural one induced by the order fil-
tration of D(A). We use this filtration to define the order of an equivalence class
of differential operators in I(K D(A))/K D(A), and we remark that the order of
such an equivalence class of differential operators equals the minimal order of the
differential operators in the equivalence class.

Proposition 1.9. Let f : A → B be a surjective homomorphism of commutative
k-algebras. If A is a free, commutative k-algebra, or if A is such that A ⊗k A is
Noetherian and Pp(A/k) is a projective A-module for all p ≥ 0, then the k-algebra
homomorphism f∗ : I(K D(A))/K D(A) → D(B) is an isomorphism of filtered k-
algebras.

Proof. We have to show that the k-algebra homomorphism f∗ is surjective, and
that the inverse is a homomorphism of filtered k-algebras. So we consider the exact
sequence

0→ K → A
f→ B → 0,

and apply the left exact functor DA(−, B) to it, where B is considered as a left
A-module. We obtain an exact sequence

0→ DA(B,B)→ DA(A,B)→ DA(K,B).

Since f is surjective, we have that DA(B,B) = DB(B,B) = D(B). Let P ∈ Dp(B)
be any differential operator of order at most p, and denote by Q its image in
DA(A,B) in the above exact sequence. Then Q ∈ Dp

A(A,B) since the co-domain
of the functor is that of filtered modules, and Q ∗ K = 0 from the exactness of
the sequence. Notice that if A is free, then Pp(A/k) is a projective A-module
for all integers p. This follows from Muhasky [26], lemma 1.4, or directly from
the definition. So in all cases, Pp(A/k) is projective, and we see that there is a
differential operator Q′ ∈ Dp(A) such that fQ′ = Q. Clearly, Q′ ∗ K ⊆ K since
Q ∗K = 0, so P 7→ Q′ is the desired inverse of f∗.

Corollary 1.10. Let f : A → B be a surjective homomorphism of commutative
k-algebras. If A is a free, commutative k-algebra or if A is a regular k-algebra of
finite type, then there is an isomorphism of filtered k-algebras

f∗ : I(K D(A))/K D(A)→ D(B).(2)

Proof. The first case is contained in proposition 1.9. For the second case, it is
clear that A⊗kA is Noetherian, so it only remains to check if Pp(A/k) is projective
for all integers p ≥ 0. Since A is of finite type over k, Pp(A/k) is an A-module
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of finite type by Másson [23], proposition 2.2.12. Then Pp(A/k) is projective if
and only if it is locally free (or equivalently, locally projective). But from Másson
[23], theorem 2.2.2, localizations commute with formation of principle parts. It is
therefore enough to see that the p’th principle parts of Am over k is a projective
Am-module for all maximal ideals m ⊆ A and all integers p. But since Am is a
regular local ring, this follows from Smith and Stafford [32], section 1.3 (f).

5. Coordinatization

Let C be a free, commutative k-algebra on the symbols X, where X is any set.
We shall give a description of C and the ring D(C) of differential operators on C
explicitly in this case. We recall that if X is a finite set with n elements x1, . . . , xn,
then C is the polynomial ring C = k[x1, . . . , xn] and D(C) is the n’th Weyl algebra
D(C) = k[x1, . . . , xn] < ∂1, . . . , ∂n >, where we write ∂i for ∂/∂xi. We recall that
the relations in the n’th Weyl algebra is given by [∂i, xi] = 1 for 1 ≤ i ≤ n.

Let us write X = {xλ}λ∈Λ, where Λ is a set of indices for X. We define a
multi-index I to be a function I : Λ→ N0, such that I(λ) = 0 for all except a finite
number of elements λ ∈ Λ. Let xI be the finite product

xI =
∏
λ∈Λ

x
I(λ)
λ

for all multi-indices I. Then, any element c ∈ C can be written uniquely as a sum

c =
∑
I

cIx
I ,

where cI ∈ k for all multi-indices I, and cI = 0 for all except a finite number of
indices. In particular, the set of monomials xI for all multi-indices I is a basis for
C, and the multiplication in C is the natural one.

Let ∂λ be the k-linear operator ∂λ = ∂/∂xλ on C given by formal derivation
with respect to xλ. This is a well-defined k-linear derivation on C for all λ ∈ Λ, and
we see that ∂λ, ∂λ′ commute for all λ, λ′ ∈ Λ. Let ∂I be the differential operator

∂I =
∏
λ∈Λ

∂
I(λ)
λ

for all multi-indices I. We shall write deg(I) =
∑
I(λ) for the degree of a multi-

index I, and this is a non-negative integer. Using this notation, it is clear that ∂I

is a differential operator of order at most deg(I), so ∂I ∈ Dp(C) with p = deg(I).
We shall also write I! =

∏
I(λ)! for all multi-indices I. With this convention, we

see that the following formulas hold for all multi-indices I, J :

∂I ∗ xJ =
{
J !/(J − I)! xJ−I , I ≤ J

0, otherwise

Notice that we write I ≤ J if I(λ) ≤ J(λ) for all λ ∈ Λ.
Let p be a fixed, non-negative integer, and let F p be the k-vector space given

by

F p = {
∑
I

fI∂
I : fI ∈ A, deg(I) ≤ p}.

Notice that we allow infinite sums in this case. The reason for this is simple: Even
if an element of F p has an infinite number of non-zero terms, the evaluation of it on
any given element c ∈ C will give a finite sum. Hence, each element of F p defines
a k-linear operator on C.

Lemma 1.11. We have Dp(C) = F p for all integers p ≥ 0.

Proof. See Muhasky [26], Example 1.3.



5. COORDINATIZATION 12

We conclude that there is a multiplication F pF q ⊆ F p+q. Clearly, we have
that xλ, xλ′ commute and ∂λ, ∂λ′ commute for all λ, λ′ ∈ Λ. Furthermore, xλ, ∂λ′
commute if λ 6= λ′, and

[∂λ, xλ] = 1

for all λ ∈ Λ. We see that these formulas define the multiplication above. We also
remark that lemma 1.11 implies that d(∂I) = deg(I), which will be useful later.

Let A be any commutative k-algebra. Then, a set of coordinates for A is a
free, commutative k-algebra C together with a surjective k-algebra homomorphism
f : C → A. Clearly, a set of coordinates for A always exists, and for the rest of this
section, we shall fix the coordinates f : C → A. From corollary 1.10, we know that
we can describe D(A) in the following way:

D(A) ∼= I(K D(C))/K D(C),

where K = ker(f) ⊆ C. Furthermore, the above identification is an isomorphism of
filtered k-algebras. Let us write C as a free, commutative k-algebra on the symbols
X, where X = {xλ : λ ∈ Λ}. Then Y = {yλ : λ ∈ Λ} with yλ = f(xλ) is a set of
generators for A as algebra over k.

Assume that A is a commutative k-algebra of finite type. Then there is a set
of coordinates f : C → A for A such that C is a polynomial ring over k in a finite
number of variables x1, . . . , xn. Then D(C) is called the n’th Weyl algebra An(k),
and it is well-known that it is Noetherian and a finitely generated k-algebra. We
remark that even if D(A) is a sub-quotient of An(k) when A is of finite type over
k, D(A) is not in general a finitely generated k-algebra. In fact, there is a famous
counterexample given by Bernstein, Gelfand and Gelfand [2]: If A is the cubic cone
A = k[x, y, z]/(x3 + y3 + z3), then D(A) is neither a finitely generated k-algebra
nor a left or right Noetherian ring.

Let V be the k-vector space V = {
∑
aI∂

I : aI ∈ A for all multi-indices I},
where we allow infinite sums. Then there is a unique, k-linear map sf : D(A)→ V
defined with respect to the fixed coordinates f : C → A: For any differential
operator P ∈ D(A), there exists a differential operator P ′ ∈ I(K D(C)) such that
f∗(P ′) = P by corollary 1.10. Let p = d(P ), then P ′ ∈ F p as defined above, so P ′

has the form

P ′ =
∑
I

cI∂
I ,

with cI ∈ C for all multi-indices I. Furthermore, P ′ is uniquely defined modulo
K D(C), so the expression

sf (P ) =
∑
I

f(cI)∂I

defines a unique element in V . We say that sf (P ) is the standard form of P with
respect to the coordinates f : C → A. It is straight-forward to check that sf is an
injective k-linear map.

Let P ∈ D(A) be any differential operator, and let sf (P ) =
∑
aI∂

I be the
standard form of P with respect to the coordinates f : C → A. Then we have
that d(P ) = max{deg(I) : aI 6= 0}: First, notice that a differential operator
P ′ =

∑
cI∂

I in D(C) has order d(P ′) = max{deg(I) : cI 6= 0}. Secondly, we see
that the minimal order among the differential operators in the equivalence class P ′

mod K D(C) is exactly max{deg(I) : aI 6= 0}.
Let {ξλ} be algebraically independent variables over A, and let ξI =

∏
ξ
I(λ)
λ

for all multi-indices I. We define B to be the commutative A-algebra given by

B = {
∑

aIξ
I : aI ∈ A, max{deg(I) : aI 6= 0} <∞}.
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Then, B = ⊕Bp is a positively graded A-algebra, with graded components given
by

Bp = {
∑

deg(I)=p

aIξ
I : aI ∈ A}

for all p ≥ 0. In particular, B0 = A.
For all differential operators P ∈ Dp(A) for p ≥ 0, let σp be the homogeneous

form of degree p in B defined by

σp(P ) =
∑

deg(I)=p

aIξ
I

where the coefficients aI are given by the standard form sf (P ) =
∑
aI∂

I of P .
We define the symbol of a non-zero differential operator P ∈ D(A) with respect to
the coordinates f : C → A to be σ(P ) = σp(P ), where p = d(P ). If Q ∈ D(A)
is another differential operator, with d(Q) < d(P ), we see that σ(P + Q) = σ(P ).
Furthermore, we have that σp+q(PQ) = σp(P )σq(Q) for all non-zero differential
operators P,Q ∈ D(A) with p = d(P ), q = d(Q). Consequently, σ defines an
injective homomorphism of graded k-algebras

σ : gr D(A)→ B,

given by P 7→ σ(P ) for all non-zero differential operators P ∈ gr D(A).

Proposition 1.12. Let A be a commutative k-algebra. If A is essentially of finite
type over k, then gr D(A) is an integral domain if and only if A is an integral
domain.

Proof. We have inclusions of k-algebras A ⊆ gr D(A) ⊆ B. Assume that A is
of finite type over k. Then we may choose the coordinates f : C → A such that
Λ is a finite set, which means that B is an integral domain if A is an integral
domain: This is well-known, since B is a polynomial ring over A in a finite number
of variables. On the other hand, we know that D(S−1A) ∼= S−1A ⊗A D(A), so
gr D(S−1A) ∼= S−1 gr D(A). Consequently, if gr D(A) is an integral domain, so is
S−1 gr D(A), and the rest is clear.

Finally, we shall refine the description of the order of differential operators
given in lemma 1.1. By using the coordinates f : C → A, we obtain the following
result:

Proposition 1.13. Let A be a commutative k-algebra, and P,Q ∈ D(A) be differ-
ential operators. Then we have:

i) d(P +Q) ≤ max{d(P ), d(Q)},
ii) d(P +Q) < max{d(P ), d(Q)} if and only if d(P ) = d(Q) and σ(P ) = −σ(Q),

iii) d(PQ) ≤ d(P ) + d(Q),
iv) d([P,Q]) ≤ d(P ) + d(Q)− 1,
Furthermore, if A is an integral domain, essentially of finite type over k, then we
have d(PQ) = d(P ) + d(Q).

Proof. Claims i), iii) and iv) are contained in lemma 1.1. The second claim is
easily obtained by writing P,Q in standard form with respect to the coordinates
f : C → A, and using the formula for order in terms of coordinates. The last part
is simply a reformulation of proposition 1.12, since d(PQ) = d(P ) + d(Q) holds for
all P,Q ∈ D(A) if and only gr D(A) is an integral domain.
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6. Graded algebras

Let A be a Z-graded k-algebra A = ⊕Ai. Then A0 is a k-algebra, and Ai is
an A0-module for all integers i. We say that A is positively graded if Ai = 0 for
all integers i < 0, and that A is quasi-homogeneous if A is positively graded and
A0 = k.

Let P ∈ D(A) be a differential operator. We say that P is homogeneous of
weight w for some integer w if P ∗ Ai ⊆ Ai+w for all integers i, and we shall write
D(A)w for the set of all homogeneous differential operators of weight w. Then
D(A)w ⊆ D(A) is a k-linear subspace. We shall also write Dp(A)w = D(A)w∩Dp(A)
for the k-linear subspace of differential operator of weight w and order at most p for
all integers p, w. We remark that D(A)w D(A)w′ ⊆ D(A)w+w′ for all integers w,w′,
and similarly we have Dp(A)w Dq(A)w′ ⊆ Dp+q(A)w+w′ for all integers p, q, w,w′.

Let C be the free, commutative k-algebra on the symbols X, where X is the
set X = {xλ : λ ∈ Λ} in the notation from section 5. We shall consider this as a Z-
graded k-algebra C = ⊕Ci by assigning an integer weight wλ to each free variable
xλ in C. Let us denote by w(I) the weighted sum w(I) =

∑
wλI(λ) for each

multi-index I. Then w(I) is an integer, and each xI is an homogeneous element of
C of weight i = w(I). In particular, we see that the set of monomials xI such that
w(I) = i is a basis for Ci.

For all λ ∈ Λ, let eλ denote the multi-index defined by eλ(λ) = 1 and eλ(λ′) = 0
for all λ′ 6= λ. Then, we have that ∂λ ∗ xI = I(λ)xI−eλ for all multi-indices I with
I(λ) ≥ 1, and zero otherwise. It follows that ∂λ is a homogeneous differential
operator in D(C) of weight −wλ. Consequently, any differential operator xI∂I

′
in

D(C) is homogeneous of weight w(I)− w(I ′), and we have

Dp(C)w = {
∑

deg(I)≤p

cI∂
I : cI ∈ Cw+w(I)}

for all integers p, w.

Proposition 1.14. Let f : A→ B be a homomorphism of commutative, Z-graded
k-algebras which is homogeneous of degree 0. Then we have:

i) If f is an injective, formally étale homomorphism, then the identification (1) of
k-algebras D(f) : D(A)→ {P ∈ D(B) : P ∗A ⊆ A} from corollary 1.6 preserves
homogeneous elements and their weights.

ii) If A is a free, commutative k-algebra or a regular k-algebra of finite type over
k, and if f is a surjective homomorphism with kernel K, then the identification
(2) of k-algebras f∗ : I(K D(A))/K D(A)→ D(B) from corollary 1.10 preserves
homogeneous elements and their weights.

In particular, the identification (1) exists and preserves homogeneous elements and
their weights if B = S−1A for a multiplicatively closed subset S ⊆ A which does
not contain any zero-divisors and f is the canonical localization map.

Proof. In the first case, a differential operator in {P ∈ D(B) : P ∗ A ⊆ A} is
homogeneous of weight w if it is homogeneous of weight w as a differential op-
erator in D(B). Similarly, in the second case, an equivalence class of differential
operators in I(K D(A))/K D(A) is homogeneous of weight w if each homogeneous
differential operator in the equivalence class is homogeneous of weight w as a dif-
ferential operator in D(A). With this observation in mind, it is enough to see that
in each case, the extended differential operator P is characterized by the equation
P ∗ f(a) = f(P ∗ a) for all a ∈ A.

Let A be a commutative k-algebra. A homogeneous set of coordinates for A is a
free, commutative, Z-graded k-algebra C, together with a k-algebra homomorphism
f : C → A which is homogeneous of degree 0 for the chosen weights wλ. So any
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Z-graded k-algebra A admits a set of homogeneous coordinates, and for the rest of
this section, we shall fix the homogeneous coordinates f : C → A and the associated
weights wλ.

Let P ∈ D(A) be a non-zero differential operator. From proposition 1.14, we
see that P is homogeneous of weight w if and only if the standard form of P with
respect to the coordinates f : C → A is of the form

s(P ) =
∑

aI∂
I ,

where aI ∈ Aw+w(I) for all multi-indices I. Furthermore, we see that any non-zero
differential operator P ∈ D(A) has the form P =

∑
Pw with each Pw homogeneous

of weight w, and if Λ is a finite set, we may assume that this sum is finite.

Lemma 1.15. Assume that A is of finite type over k. For all integers p, we
have

i) D(A) = ⊕D(A)w,
ii) Dp(A) = ⊕Dp(A)w,

where the two direct sums run over all integers w.

Proof. Since A is of finite type over k, there is a finite set of homogeneous co-
ordinates for A, that is, we may assume that Λ is finite. The rest is clear, since
D(A)w ∩D(A)w′ = 0 if w 6= w′.

For the rest of this section, we shall assume that A is of finite type over k. Then,
D(A) is a graded k-algebra from lemma 1.15, and Dp(A) is a graded A-module. We
also obtain the following result:

Corollary 1.16. Let f : A → B be a homomorphism of commutative, Z-graded
k-algebras of finite type. If f is injective and formally étale, then the identifica-
tion (1) from corollary 1.6 is an isomorphism of Z-graded k-algebras. If A is a
free, commutative k-algebra or a regular k-algebra, and if f is surjective, then the
identification (2) from corollary 1.10 is an isomorphism of Z-graded k-algebras.

Proof. In the case of a injective, formally étale homomorphism, it is clear that
{P ∈ D(B) : P ∗ A ⊆ A} is a graded subring of D(B). In the case of a surjective
homomorphism, it is clear that I(K D(A))/K D(A) is a graded subquotient of D(A).
So all k-algebras involved have natural Z-gradings. The rest is clear.

From lemma 1.15, it also follows that the associated graded ring gr D(A) has a
natural Z2-grading, since we have

gr D(A) = ⊕
p,w

Dp(A)w/Dp−1(A)w.

We say that x ∈ gr D(A) is homogeneous of bidegree (p, w) if x ∈ Dp(A)w/Dp−1(A)w
for some integers p, w ∈ Z. Furthermore, we denote by gr(p,w) D(A) the linear sub-
space in gr D(A) of homogeneous elements of bidegree (p, w). We also notice that
if C = k[x1, . . . , xn], where xi is homogeneous of degree wi, then B = A[ξ1, . . . , ξn],
and we consider this as a Z2-graded ring: Every homogeneous element in A of
weight w is homogeneous in B of bidegree (0, w), and ξi is homogeneous in B
of bidegree (1,−wi). It follows that the symbol relative to the homogeneous co-
ordinates f defines an injective homomorphism σ : gr D(A) → A[ξ1, . . . , ξn] of
Z2-graded k-algebras.

Let f : A → B be an injective, formally étale homomorphism of Z-graded
k-algebras. Then D(f) : D(A) → D(B) is a injective homomorphism of Z-graded
k-algebras such that d(D(f)(P )) = d(P ) for all differential operators P ∈ D(A)
by corollary 1.6 and corollary 1.16. Consequently, this homomorphism induces an
injection of Z2-graded k-algebras

gr(f) : gr D(A)→ gr D(B)
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given by gr(f)(P ) = D(f)(P ) for all non-zero differential operators P ∈ D(A). We
shall therefore consider gr D(A) a Z2-graded subring of gr D(B) whenever f : A→ B
is an injective, formally étale homomorphism of Z-graded k-algebras. In particu-
lar, this applies when A is a Z-graded k-algebra, B = S−1A is the localization
with respect to a multiplicatively closed subset S ⊆ A consisting of homogeneous
elements, and f : A→ B is the localization map.

We end this chapter with the definition of the Bernstein filtration, an alternative
to the usual order filtration of D(A) in the graded case, with nice computational
advantages. Assume that A is a Z-graded k-algebra of finite type. Then the n’th
k-linear subspace Bn(A) ⊆ D(A) in the Bernstein filtration is given by

Bn(A) = ⊕
w∈Z

D(n−w)/2(A)w,

where Dq(A)w = {P ∈ D(A)w : d(P ) ≤ q} for all rational numbers q. The moti-
vation for this definition is the following special case: If A = k[t] with the usual
Z-grading, then the n’th filtered subspace in the Bernstein filtration of D(k[t]) has
k-linear basis {ta∂b : a+ b ≤ n}.

We see that the linear subspaces Bn(A) form an ascending filtration of the
k-algebra D(A). We may therefore consider the associated graded ring associated
with this filtration,

gr′D(A) = ⊕
n

Bn(A)/Bn−1(A),

which is a Z-graded k-algebra. Furthermore, we see that there is an isomorphism
of k-algebras between gr′D(A) and the usual associated graded ring gr D(A), and a
homogeneous element in gr D(A) of bidegree (p, w) corresponds to a homogeneous
element in gr′D(A) of degree n = 2p+ w.

Proposition 1.17. Let A be a quasi-homogeneous k-algebra of finite type over k.
Then Dp(A)w is a k-vector space of finite dimension for all integers p, w. In par-
ticular, gr(p,w) D(A) is a k-vector space of finite dimension.

Proof. Notice that A is quasi-homogeneous if and only if the weights wλ > 0 for
all λ ∈ Λ and for all choices of homogeneous coordinates. Consequently, the set
{I : w(I) = c} is finite for any given integer c. But the set

{xI∂J : deg(J) ≤ p, w(I)− w(J) = w}
is a basis for Dp(C)w, and this basis is finite: The number of multi-indices J such
that deg(J) ≤ p is finite, and for each such J , there is only a finite number of
multi-indices I such that w(I) = w+w(J). Consequently, there is a finite basis for
Dp(A)w as well. The rest is clear.

A very useful observation is the following: If A is quasi-homogeneous, and if
D(n−w)/2(A)w is non-zero for a finite number of weights w, then Bn(A) has finite
dimension as well. In the next chapter, we will show that in some interesting
examples, this condition is fulfilled for all integers n.



CHAPTER 2

Differential operators on monomial curves

In this chapter, we give an explicit description of the ring D(A) of differential
operators on A, its associated graded ring gr D(A) and the module of derivations
Derk(A) when A = k[Γ] is the affine coordinate ring of a monomial curve. We find
methods and obtain results that make it possible to do explicit calculations with
differential operators on monomial curves. The results described in this chapter
were obtained in a joint work with Henrik Vosegaard. We are aware that some
special rings of differential operators on monomial curves had been calculated by I.
Musson and others, and that some of the results given in this chapter can also be
found in Jones [17].

There are some strong structural results on the ring of differential operators of
affine algebraic curves, which appeared in Smith and Stafford [32]. In particular,
the ring of differential operators on a monomial curve is Morita equivalent to the
first Weyl algebra A1(k). We mention some of these results in this chapter, for later
reference.

1. Monomial curves

Let Γ be a finitely generated semigroup with an embedding Γ ⊆ Zm. Then
clearly, ZΓ ∼= Zn for some non-negative integer n ≤ m. So by changing the em-
bedding, we may assume that ZΓ = Zn. We denote by an affine semigroup a
finitely generated semigroup with fixed embedding Γ ⊆ Zn such that ZΓ = Zn. By
convention, all semigroups are assumed to have an additive identity 0.

Let Γ ⊆ Zn be an affine semigroup. The semigroup algebra A = k[Γ] is defined
to be the k-algebra in T = k[t1, t−1

1 , . . . , tn, t
−1
n ] with k-linear basis {tγ : γ ∈ Γ},

where tγ is given by

tγ =
n∏
i=1

tγii

with γ = (γ1, . . . , γn) as an element of Zn. The multiplication in A, inherited from
the multiplication in T , is given by tγtγ

′
= tγ+γ′ for all γ, γ′ ∈ Γ. In particular, we

see that k[Zn] = T .
Since Γ is an commutative semigroup of finite type, we see that A = k[Γ] is a

commutative k-algebra of finite type. Since A is a subring of the integral domain
T , we also see that A is an integral domain. In particular, it follows that A = k[Γ]
is the affine coordinate ring of an affine algebraic variety XΓ = Spec(A). This is
the origin of the name affine semigroup. We remark that the Krull dimension of A,
and hence the dimension of XΓ, is n: This is easy to see, since the integral domains
A, T and k[t1, . . . , tn] have the same field of fractions, and hence the same Krull
dimension.

The k-algebra T has a natural Z-grading such that ti is homogeneous of degree
1 and t−1

i is homogeneous of degree −1 for 1 ≤ i ≤ n. From the construction of
A = k[Γ], we see that A ⊆ T has a natural structure as a graded subring: Let G be
a finite set of generators for Γ. Then {tγ : γ ∈ G} is a set of generators of A as a

17
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k-algebra, and each tγ is homogeneous in T : For all γ ∈ Γ, write |γ| =
∑
γi, where

γ = (γ1, . . . , γn) as an element in Zn. Then tγ is homogeneous in T of degree |γ|.
We also see that there exists a multiplicatively closed subset S ⊆ A consisting

of homogeneous elements of A, such that T ∼= S−1A: This is clear, since ZΓ = Zn.
In fact, we may choose S to be the multiplicatively closed subset of A generated by
a set of homogeneous generators for A as k-algebra.

Let us consider the case special case n = 1: That is, let Γ ⊆ Z be an affine
semigroup. Then, we have the following structural result:

Lemma 2.1. Let Γ ⊆ Z be an affine semigroup. Then Γ is a semigroup of one of
the following forms:

i) Γ ⊆ N0, and n+ N0 ⊆ Γ for some non-negative integer n,
ii) −Γ ⊆ N0, and n+ N0 ⊆ −Γ for some non-negative integer n,

iii) Γ = Z.

Proof. Let Γ ⊆ Z be an affine semigroup. If Γ ⊆ N0, then it is easy to see that
the condition ZΓ = Z implies that n+ N0 ⊆ Γ for some non-negative integer n (in
fact, these conditions are equivalent). A similar statement holds if −Γ ⊆ N0. So it
is enough to prove that if Γ contains strictly positive and strictly negative elements,
then Γ = Z: Assume that Γ contains strictly positive and strictly negative elements,
and consider the semigroup Γ′ = Γ∩N0 ⊆ N0. Then, there exists a unique positive
integer d, such that Γ′ ⊆ dN0 and d(n + N0) ⊆ Γ′ for some non-negative integer
n. If d = 1, then Γ = Z and we are done. So assume that d > 1. For all positive
integers m such that −m ∈ Γ, we have that Nd−m ∈ Γ′ for some positive integer
N . Hence Γ ⊆ dZ, so ZΓ ⊆ dZ, which is a contradiction.

We say that an affine semigroup Γ ⊆ Z is a numerical semigroup if Γ ⊆ N0.
From lemma 2.1, we see that for any numerical semigroup Γ, there exists a non-
negative number n such that n + N0 ⊆ Γ. Equivalently, if {g1, . . . , gm} is a set of
generators of Γ, then (g1, . . . , gm) = 1. A very useful characterization of numerical
semigroups is the following: Any subsemigroup Γ ⊆ N0 such that N0 \ Γ is finite,
is a numerical semigroup.

Let us recall some well-known facts about numerical semigroups, and at the
same time fix the notations which we will use throughout this thesis: We shall
denote by c = c(Γ) the conductor of Γ, which is the least integer n such that
n + N0 ⊆ Γ. We shall denote by H the set of holes in Γ, defined by H = N0 \ Γ.
This is a finite, possibly empty set, and we denote by h its cardinality. If Γ 6= N0,
we denote by g = g(Γ) the Frobenius number of Γ, which is given by g = max H.
Clearly, we have that g + 1 = c.

A numerical semigroup Γ has a unique, minimal set of generators in a very
strong sense: In fact, every set of generators for Γ contains this minimal set. We
shall always denote the minimal set of generators by {a1, . . . , ar}, and we choose
the order of the generators such that a1 < a2 < · · · < ar. Let us construct the set
{a1, . . . , ar} explicitly: We define a1 to be

a1 = min{γ ∈ Γ : γ 6= 0},
and define ai+1 recursively as

ai+1 = min{γ ∈ Γ : γ 6∈< a1, . . . , ai >},
for all integers i such that < a1, . . . , ai > 6= Γ, where < a1, . . . , ai > denotes the
subsemigroup in Γ generated by {a1, . . . , ai}. Clearly, there exists some integer r
such that < a1, . . . , ar >= Γ, so {a1, . . . ar} is a generating set for Γ. From the
construction, we see that the generators satisfy a1 < a2 < · · · < ar, and that they
satisfy the minimality condition. The minimal number r of generators for Γ is
called the rank of Γ.
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We say that a numerical semigroup Γ is symmetric if there is an integer n ∈ Z
such that γ ∈ Γ if and only if n− γ 6∈ Γ for all γ ∈ Z. It is easy to see that if Γ is
symmetric, then this integer n must equal the Frobenius number g.

Let Γ be a numerical semigroup, and consider the semigroup algebra A = k[Γ].
Since n = 1 in this case, we shall drop the index and write t for t1. We see that
A = k[ta1 , . . . , tar ] considered as a subring of k[t]. Furthermore, XΓ = SpecA is a
curve since n = 1, and in fact XΓ is the parametrized curve

XΓ = {(x1, . . . , xr) ∈ Ar : xi = tai with t ∈ k for 1 ≤ i ≤ r},

of embedding dimension r. We say that an affine, algebraic variety is a monomial
curve if it is isomorphic to XΓ for some numerical semigroup Γ. By abuse of
language, we shall also say that the affine coordinate ring A = k[Γ] of XΓ is a
monomial curve.

Clearly, k[t] is the integral closure of A = k[Γ]. We shall write A = k[t] for all
numerical semigroups Γ, and refer to A as the normalization of A. Furthermore,
we say that XΓ = SpecA is the normalization of XΓ, and that the morphism
XΓ → XΓ of affine varieties induced by the inclusion A ⊆ A is the normalization
map of XΓ. We see that XΓ = A1, and that the normalization morphism is given
by t 7→ (ta1 , . . . , tar ) for all t ∈ k. It is easy to see that the normalization map of
any monomial curve XΓ is a bijection. But if Γ 6= N0, it is not an isomorphism of
algebraic varieties.

As in the general case, A = k[Γ] is a graded subring of T = k[t, t−1] for all
numerical semigroups Γ. Furthermore, there is a multiplicatively closed subset S
of A consisting of homogeneous elements, such that S−1A ∼= T : In fact, we may
choose S = {xn : n ≥ 0} with x = ta1 . Clearly, all monomial curves A = k[Γ] are
quasi-homogeneous. We also see that A is regular if Γ = N0, and that A has an
isolated singularity in 0 otherwise.

2. Differential operators

Let Γ ⊆ Zn be an affine semigroup. Then A = k[Γ] ⊆ T = k[t1, t−1, . . . , tn, t
−1
n ]

is an inclusion of graded k-algebras, and T = S−1A is a localization of A with
respect to a multiplicatively closed subset S consisting of homogeneous elements.
So by the identification (1) in corollary 1.6, we see that

D(A) = {P ∈ D(T ) : P ∗A ⊆ A}.

Moreover, we can use the same technique to describe D(T ) explicitly in terms of
D(B), where B = k[N0

n] = k[t1, . . . , tn]: Also in this case, we see that B ⊆ T is
a graded subalgebra, and that T is a localization T = S−1B with respect to some
multiplicatively closed subset S ⊆ B consisting of homogeneous elements in B. So
from proposition 1.5, we see that there is an isomorphism of D(B)-T bimodules

D(T ) ∼= T ⊗B D(B).

But D(B) is the n’th Weyl algebra D(B) = An(k), so we have an explicit description
of D(T ): For all integers p ≥ 0, any differential operator P ∈ Dp(T ) can be written
uniquely as a sum

P =
∑

deg(I)≤p

cI∂
I

with cI ∈ T for all multi-indices I. We also remark that the inclusion D(A) ⊆ D(T )
is an inclusion of Z-graded k-algebras from corollary 1.16.

Let Ei = ti∂i, then Ei is a homogeneous derivation in D(T ) of weight 0 for
1 ≤ i ≤ n. We also see that Ei ∗A ⊆ A, since Ei ∗ tI = I(i)tI for all multi-indices I.
Furthermore, all these derivations commute. Let us denote the k-algebra generated
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by E1, . . . , En in D(T ) by W . Then W is isomorphic to a commutative polynomial
ring in n variables over k, and clearly, W ⊆ D(A)0.

Let w ∈ Zn. We shall write Ω(w) for the subset Ω(w) ⊆ Γ given in the following
way:

Ω(w) = {γ ∈ Γ : γ + w 6∈ Γ}.

The semigroup Γ is considered as a subsemigroup of Zn, and the addition used in
the definition of Ω(w) takes place in Zn. The set Ω(w) does of course not only
depend on w, but also upon the affine semigroup Γ, even if this is suppressed from
the notation.

We remark that we may view Ω(w) as a subset of An
k : This is clear, since

Γ ⊆ Zn ⊆ An
k . Let us denote by I(Ω(w)) the ideal defined by Ω(w) in the sense

of classical algebraic geometry: It is an ideal in the polynomial ring k[x1, . . . , xn],
where x1, . . . , xn are the coordinate functions on An

k , and it consists of the functions
in k[x1, . . . , xn] which vanish on Ω(w). We shall identify this ideal with an ideal in
W , by identifying the i’th coordinate function xi with Ei for 1 ≤ i ≤ n. By abuse
of notation, we shall denote the new ideal in W by I(Ω(w)) as well.

Theorem 2.2. Let Γ ⊆ Zn be an affine semigroup, and let A = k[Γ] be the corre-
sponding semigroup algebra. Then we have

D(A) = ⊕
w∈Zn

twI(Ω(w)).

In particular, the k-linear subspace of D(A) consisting of homogeneous differential
operators of weight m is given by

D(A)m = ⊕
|w|=m

twI(Ω(w))

for all integers m ∈ Z.

Proof. See Musson, [27], theorem 2.3.

We remark that we could consider D(A) a Zn-graded k-algebra, using the Zn-
grading of A. Since we will mostly be interested in monomial curves, we have chosen
not to develope the theory of diffential operators in that direction.

Let us consider the special case when Γ ⊆ Z is a numerical semigroup: In this
case, we write ∂ for ∂1 and E = t∂ for the homogeneous derivation E1 = t1∂1 of
weight 0 in D(A). We know that H is finite, so it is clear that Ω(w) is a finite set
for all integers w ∈ Z, and we shall write τ(w) for the cardinality of Ω(w) for all
w ∈ Z. This defines a numerical function τ : Z → N0, which depends upon the
numerical semigroup Γ. Notice that if w 6∈ Γ, then 0 ∈ Ω(w). Consequently, we
have that τ(w) = 0 if and only if w ∈ Γ, so τ describes Γ completely.

For all integers w, we define the characteristic polynomial relative to w to be
the polynomial χw ∈ k[ξ] given by

χw(ξ) =
∏

γ∈Ω(w)

(ξ − γ).

This is a monic polynomial in k[ξ] of degree τ(w), and it will of course depend upon
the numerical semigroup Γ. Using this polynomial, we obtain the following special
case of theorem 2.2:

Corollary 2.3. Let Γ be a numerical semigroup, and let A = k[Γ] be the corre-
sponding monomial curve. Then we have

D(A) = ⊕
w∈Z

Pwk[E],
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where Pw = twχw(E). In particular, the k-linear subspace of D(A) consisting of
homogeneous differential operators of weight w is given by D(A)w = Pwk[E] for all
integers w.

Proof. We have to prove that the ideal I(Ω(w)) ⊆ k[E] is generated by χw(E).
But this is clear, since any polynomial in one variable that vanishes on Ω(w) must
be a multiple of χw.

3. The numerical function τ

For the rest of this chapter, we shall assume that Γ is a numerical semigroup,
and that A = k[Γ] is the corresponding monomial curve. Notice that since A is
an integral domain of finite type, En ∈ D(A) has order d(En) = n for all positive
integers n by proposition 1.13. So in particular, Pw is a differential operator in
D(A) of order d(Pw) = τ(w) for all integers w by corollary 2.3. Since τ(w) is the
minimal order of a homogeneous differential operator in D(A) of weight w, it is
clearly of interest to study the behaviour of the numerical function τ .

Proposition 2.4. For all integers w, we have τ(w) + w = τ(−w).

Proof. Since the formula is symmetric, and obviously true for w = 0, we may
assume that w > 0. For 0 ≤ j ≤ w − 1, we define mj = min Γ ∩ (j + wN0). It
follows that m0, . . . ,mw−1 are distinct integers in Ω(−w). It is therefore enough
to construct a bijection f : Ω(−w) \ {m0, . . . ,mw−1} → Ω(w). So let l ∈ Ω(−w)
be different from all the mi’s. Then l ∈ Γ, l−w 6∈ Γ, but there exists some integer
n > 1 such that l − nw ∈ Γ. Let nl be the least of all such positive numbers n,
and put f(l) = l − nlw. Then f(l) ∈ Ω(w), and f is a well-defined map. A similar
construction will give an inverse of f , so f is a bijection.

Proposition 2.5. For all integers w,w′, we have τ(w + w′) ≤ τ(w) + τ(w′). Fur-
thermore, equality holds if and only if ww′ = 0 or w,w′ ∈ Γ or −w,−w′ ∈ Γ.

Proof. Consider the map f : Ω(w+w′)\Ω(w)→ Ω(w′) given by f(l) = l+w. This
is a well-defined injection. But Ω(w+w′) is the disjoint union of Ω(w+w′)∩Ω(w)
and Ω(w + w′) \ Ω(w). Since Ω(w + w′) ∩ Ω(w) ⊆ Ω(w), we obviously have that
τ(w+w′) ≤ τ(w) + τ(w′). Furthermore, equality holds if and only if f is surjective
and Ω(w) ⊆ Ω(w + w′). We show that τ(w + w′) = τ(w) + τ(w′) if and only if
w = 0 or w′ = 0 or w,w′ ∈ Γ or −w,−w′ ∈ Γ: One implication is obvious, so let
us assume that τ(w + w′) = τ(w) + τ(w′) and w,w′ 6= 0. Then f is surjective and
Ω(w) ⊆ Ω(w + w′) by the previous remark. If w > 0, then 0 is not in the image
of f . But im(f) = Ω(w′), and 0 ∈ Ω(w′) if and only if w′ 6∈ Γ. Hence w′ ∈ Γ. In
particular w′ > 0, so by interchanging the roles of w and w′, we see that w ∈ Γ. If
w,w′ < 0, we get from proposition 2.4 that

τ(−w) + τ(−w′) = τ(w) + w + τ(w′) + w′ = τ(w + w′) + w + w′ = τ(−w − w′).

By the argument in the case w > 0, we get −w,−w′ ∈ Γ.

We remark that if Γ = N0, we have Ω(w) = {0, 1, . . . ,−(w+1)} if w is negative,
and Ω(w) is empty otherwise. So we obtain the formula τ(w) = 1/2(|w| − w) in
this case. As a consequence, the two formulas above are trivial in the case Γ = N0.

4. The ring of differential operators

Let Γ be a numerical semigroup, and let A = k[Γ] be the corresponding mono-
mial curve. We shall give an explicit description of the ring of differential operators
D(A) on this monomial curve.
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From corollary 2.3, we see that the set {Pw : w ∈ Z} ∪ {E} generates D(A)
as a k-algebra. It is also clear that PwPw′ and Pw+w′ are homogeneous differential
operators of weight w + w′.

Lemma 2.6. Let w,w′ be integers. Then the homogeneous differential operators
PwPw′ and Pw+w′ are equal if and only if one of the following conditions hold:
ww′ = 0, or w,w′ ∈ Γ, or w,w′ ∈ −Γ. Moreover, if none of these conditions holds,
then d(PwPw′) > d(Pw+w′).

Proof. From proposition 2.5, τ(w + w′) = τ(w) + τ(w′) if and only if one of the
conditions ww′ = 0, or w,w′ ∈ Γ, or w,w′ ∈ −Γ is fulfilled. Furthermore, we have
that d(PwPw′) = d(Pw) + d(Pw′) since A is an integral domain of finite type, and
d(Pw) = τ(w), d(Pw′) = τ(w′), and d(Pw+w′) = τ(w + w′) from corollary 2.3. So
PwPw′ and Pw+w′ have the same order if and only if one of the conditions ww′ = 0,
or w,w′ ∈ Γ or w,w′ ∈ −Γ is fulfilled. Moreover, if this is not the case, then
d(PwPw′) > d(Pw+w′) from proposition 2.5. So it only remains to show that if the
differential operators have the same order, they must be equal. But homogeneous
differential operators in D(A) of weight w+w′ and order τ(w+w′) can only differ
by a scalar multiple in k∗: This is clear, since corollary 2.3 gives the dimension
formula

dimk Dp(A)w =
{
p− τ(w) + 1, p ≥ τ(w)

0, p < τ(w)

for all integers p, w. From corollary 2.3, we see that PwPw′ and Pw+w′ both have
leading term tw+w′+τ(w+w′)∂τ(w+w′), so they must be equal.

We see that any differential operator Pw with w ∈ Γ can be written as a finite
product of differential operators from the set {Pw : w = a1, . . . , ar}. Similarly,
any differential operator Pw with w ∈ −Γ can be written as a finite product of
differential operators from the set {Pw : w = −a1, . . . ,−ar}. It is therefore clear
that the finite set G given by

G = {Pw : |w| = a1, . . . , ar or |w| ∈ H} ∪ {E}

is a set of generators for D(A) as k-algebra. However, it is not in general a minimal
set of generators for D(A). See Smith and Stafford [32], section 3.12 for an easy
counterexample: Let Γ =< 2, 3 >, then the generator P−3 is superfluous in the
generating set G. In fact, P−3 = 1/2 [P−2, P−1] in this case.

If Γ = N0, then G = {t, ∂, E}, and the maximal order of a generator in G is
1. Assume that Γ 6= N0; we shall calculate the maximal order of the generators
in G in this case as well: Obviously, d(E) = 1, d(Pw) = 0 for w = a1, . . . , ar, and
by proposition 2.4, d(Pw) = −w for w = −a1, . . . ,−ar. If w ∈ H, then we have
Ω(w) ⊆ {0, 1, . . . , g − w}, and therefore τ(w) ≤ g − w + 1 ≤ g. If w ∈ −H, then
proposition 2.4 gives the inequality τ(w) = τ(−w)−w ≤ (g+w+1)−w = g+1 = c.
It follows that the maximal order of a differential operator in G is bounded by

max{d(P ) : P ∈ G} ≤ max{ar, c}.

Moreover, d(Pw) = ar for w = −ar, and d(Pw) = τ(−g) = τ(g) + g = 1 + g = c for
w = −g. So if Γ 6= N0, the equality

max{d(P ) : P ∈ G} = max{ar, c}

holds. Furthermore, if Γ = N0, then max{ar, c} = 1, so equality holds as well. We
summarize these results in the following theorem:

Theorem 2.7. Let Γ be a numerical semigroup, and let A = k[Γ] be the corre-
sponding monomial curve. Then the k-algebra D(A) of differential operators on A
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has a finite generating set

G = {Pw : |w| = a1, . . . , ar or |w| ∈ H} ∪ {E}

of cardinality 2r+ 2h+ 1. Furthermore, the algebra D(A) is generated by the linear
subspace Dp(A) ⊆ D(A) with p = max{ar, c}.

Since G is not a minimal generating set for D(A) as k-algebra, p = max{ar, c}
is in general not the minimal order such that D(A) is generated by Dp(A). In fact,
in the example Γ =< 2, 3 > mentioned above, Dp(A) generates D(A) for p = 2,
while ar = 3. However, in section 6, we shall show that the generating set G given
above has nice properties when passing to the associated graded ring gr D(A).

For all integers w, the characteristic polynomial χw ∈ k[ξ] has integer coeffi-
cients. Furthermore, En can be expressed in the form

En = tn∂n +
n−1∑
i=1

cnit
i∂i,

with cni ∈ N0 for all natural numbers n and all indices i with 1 ≤ i ≤ n − 1. So
the differential operator Pw = twχw(E) has integer coefficients ci when written in
standard form

Pw = tw+τ(w)∂τ(w) +
τ(w)−1∑
i=0

cit
w+i∂i,

and the coefficients ci are easily computed from the numerical function τ and the
expressions for powers of E given above. Furthermore, the leading term of Pw is
tw+τ(w)∂τ(w) = tτ(−w)∂τ(w) for all integers w.

Let A be any domain over k, and let A be its normalization. It turns out that
it is very useful to compare the ring structures of D(A) and D(A), especially when
A has Krull dimension 1:

Theorem 2.8. Let A be an integral domain of finite type over k, such that A has
Krull dimension 1. Then the following conditions are equivalent:

i) The normalization map SpecA→ SpecA is injective.
ii) D(A) is a simple ring.

iii) A is a simple left D(A)-module.
iv) D(A) is Morita equivalent to D(A).

Proof. See Smith and Stafford [32], proposition 3.3, theorem 3.4, theorem 3.7,
and proposition 4.2 and the following comments.

Let us apply this theorem to the monomial curve A = k[Γ]: We know that the
normalization of A is A = k[t], so D(A) is the Weyl algebra A1(k). Furthermore, the
normalization map XΓ → XΓ is bijective. So by theorem 2.8, we have that D(A) is
a simple ring, Morita equivalent to the Weyl algebra A1(k), for all monomial curves
A = k[Γ].

Corollary 2.9. Let Γ be a numerical semigroup, and let A = k[Γ] be the corre-
sponding monomial curve. Then the ring D(A) is Morita equivalent to the Weyl
algebra A1(k). Furthermore, D(A) has the following properties:

i) D(A) is a simple Noetherian ring.
ii) A is a simple left D(A)-module.

iii) D(A) has Krull dimension 1.
iv) D(A) has Gelfand-Kirillov dimension 2.
v) D(A) is a hereditary ring.
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Proof. From theorem 2.8, A is a simple left D(A)-module. Since A = k[t] is a
regular domain of finite type over k, the result holds for Γ = N0 by Smith and
Stafford [32], section 1.4, and hence for A = A. But in the general case, D(A) is
Morita equivalent with D(A) = A1(k) by theorem 2.8. This means that there are
equivalences of categories between left D(A)-modules and left A1(k)-modules, and
between right D(A)-modules and right A1(k)-modules. But the property of being
a simple Noetherian ring is a Morita equivalent property, and Krull dimension,
Gelfand-Kirillov dimension and global dimension are Morita invariant numbers.
This proves the corollary, since a ring is hereditary if and only if it has global
dimension 1.

We remark that the ring D(A) is neither left nor right Artinian: Let In be the
left ideal in D(A) generated by tn for n ≥ c, and similarly, let Jn the right ideal
in D(A) generated by tn for n ≥ c. Then Ic ⊇ Ic+1 ⊇ . . . is a chain of left ideals,
and similarly Jc ⊇ Jc+1 ⊇ . . . is a chain of right ideals. But In = In+1 if and
only if Ptn+1 = tn for some differential operator P ∈ D(A). Since A is an integral
domain of finite type over k, we know that d(P ) + d(tn+1) = d(tn), so d(P ) = 0
and P ∈ A. But we easily see, for instance by comparing degrees of polynomials
in A, that this is a contradiction. So D(A) has an infinite descending chain of left
ideals. Similarly, Jn = Jn+1 if and only if tn+1P = tn for some differential operator
P ∈ D(A), which is also impossible. So D(A) has an infinite descending chain of
right ideals, as well.

5. The derivation module

Let Γ be a numerical semigroup, and let A = k[Γ] be the corresponding mono-
mial curve. Then Derk(A) is a Z-graded left A-module in D(A), since A is of finite
type. We shall give an explicit description of this A-module. It is well-known that
if Γ = N0, then Derk(A) = A∂ = k[t]∂, a free left A-module of rank 1. So this is a
trivial case, and for the rest of this section, we shall assume that Γ 6= N0.

Let w be any integer. We shall denote by Derk(A)w the set of homogeneous
derivations of A of weight w. By definition, Derk(A)w = D(A)w ∩Derk(A). We see
that if τ(w) ≤ 1, then Derk(A)w is a one-dimensional k-vector space: If w ∈ Γ, it
is generated by twE = PwE, and if τ(w) = 1, then it is generated by twE = Pw.
Furthermore, Derk(A)w = 0 if τ(w) ≥ 2.

Let us consider the set Γ(1) = {w ∈ Z : τ(w) = 1}. We remark that Γ(1) ⊆ H,
and therefore Γ(1) is a finite set. To see this, assume that w ∈ Γ(1) for some strictly
negative number w. If w = −1, then τ(−1) = τ(1) + 1 ≥ 2, since 1 6∈ Γ. If w ≤ −2,
then τ(w) = τ(−w)−w ≥ 2. So we can conclude that no strictly negative number
w can have τ(w) = 1. It follows that

Γ(1) = {w ∈ H : w + γ ∈ Γ for all non-zero γ ∈ Γ}.

Clearly, Derk(A) is generated by E and {Pw : w ∈ Γ(1)} as a left A-module. So we
immediately see that the subring of D(A) generated by A and Derk(A) is positively
graded. But D(A) is not positively graded: In fact, Pw is a non-zero homogeneous
differential operator of weight w for all strictly negative numbers w. So for a
monomial curve A, D(A) is generated by A and Derk(A) if and only if A is regular.
We remark that this proves Nakai’s conjecture in the case of monomial curves.

Proposition 2.10. Let Γ 6= N0 be a numerical semigroup, and let A = k[Γ] be
the corresponding monomial curve. Then, the set {twE : w ∈ Γ(1) or w = 0} is a
minimal set of homogeneous generators for Derk(A) as left A-module.
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Proof. It is clear that this is a homogeneous set of generators of Derk(A) as a left
A-module. But let w ∈ Γ(1) or w = 0, and let γ ∈ Γ. Then tγ(twE) = tγ+wE, and
γ + w ∈ Γ if γ 6= 0, so none of the generators are superfluous.

Let A be any quasi-homogeneous k-algebra which is an integral domain of finite
type over k. If A is Cohen-Macaulay, then the Cohen-Macaulay type of A is defined
to be t = t(A) = dimk Ext

1
A(k,A), where k = A/A+, and A+ is the unique graded

maximal ideal A+ = ⊕i>0Ai ⊆ A. The Cohen-Macaulay type t(A) of A is a strictly
positive integer, and t(A) = 1 if and only if A is Gorenstein. See Bruns and Herzog
[8] for a general reference on Cohen-Macaulay type.

It is well-known that any integral domain of Krull dimension 1 is Cohen-
Macaulay. So the Cohen-Macaulay type of a monomial curve A = k[Γ] is a well-
defined natural number. By Fröberg [14], lemma 1, the Cohen-Macaulay type of a
monomial curve A = k[Γ] is the cardinality of the set Γ(1).

It is an elementary fact that g ∈ Γ(1), and that Γ(1) = {g} if and only if Γ is
a symmetric semigroup. So in particular, we see that a monomial curve A = k[Γ]
is Gorenstein if and only if Γ is symmetric, which is a well-known result. More
generally, the following result holds:

Proposition 2.11. Let Γ 6= N0 be a numerical semigroup, and let A = k[Γ] be
the corresponding monomial curve. Then the minimal number of generators of the
A-module Derk(A) is given by µ(Derk(A)) = t(A) + 1.

All numerical semigroups of rank 2 are symmetric. So t(A) = 1, and {E, tgE}
is a minimal set of generators for Derk(A) in this case. Furthermore, it is known
that there is no bound of t(A) when Γ is a numerical semigroup of rank at least
4, see Cavaliere and Niesi [10], remark 3.3 and Fröberg, Gottlieb and Häggkvist
[13], note 11. However, the situation for numerical semigroups of rank 3 is quite
different: By Cavaliere and Niesi [10], proposition 3.2, the Cohen-Macaulay type
t(A) ≤ 2 in this case, and the possible values t(A) = 1, 2 are both obtained:
t(A) = 1 for all symmetric numerical semigroups of rank 3, and t(A) = 2 for all
non-symmetric numerical semigroups of rank 3. This gives a positive answer to a
question raised by Skaar in her Master thesis [31], with applications to deformation
theory of monomial curves:

Proposition 2.12. Let Γ be a numerical semigroup of rank 3, and let A = k[Γ] be
the corresponding monomial curve. If Γ is symmetric, then {E, tgE} is a minimal
set of homogeneous generators of Derk(A) as left A-module. Otherwise, there exists
a unique h 6= g in Γ(1) such that {E, thE, tgE} is a minimal set of homogeneous
generators of Derk(A) as left A-module.

6. The associated graded ring

Let Γ be a numerical semigroup, and let A = k[Γ] be the corresponding mono-
mial curve. We shall give an explicit description of the associated graded ring
gr D(A) associated with this monomial curve.

Since A → T is an injective localization map of Z-graded k-algebras, we shall
consider gr D(A) a Z2-graded subring of gr D(T ). But T = k[t, t−1], so let us fix
the homogeneous coordinates f : k[t, u] → T for T given by t 7→ t, u 7→ t−1.
But ∂u ∈ D(k[t, u]) corresponds to −t2∂ ∈ D(T ), so the symbol relative to the
coordinates f defines an injective homomorphism of Z2-graded k-algebras

σ : gr D(T )→ T [ξ],
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where σ(∂) = ξ. We recall that the differential operators in D(T ) of order at most
p are given as

Dp(T ) = {
p∑
i=0

ci∂
i : ci ∈ T}

for all integers p ≥ 0. Consequently, σ : gr D(T )→ T [ξ] is surjective, and therefore
an isomorphism. We shall consider gr D(A) a Z2-graded subring of T [ξ] = k[t, t−1, ξ]
via the symbol σ.

Let P be a non-zero differential operator in D(A). We may write P in standard
form relative to the homogeneous coordinates f , since we identify P with a differ-
ential operator in D(T ). Therefore, the symbol of P relative to the coordinates f
is well-defined.

Assume that p ≥ τ(w), and let P = PwE
p−τ(w) ∈ D(A). Then P is a homoge-

neous differential operator of weight w and order p, and we have

σ(P ) = tw+pξp.

We know form corollary 2.3 that the set of differential operators PwEp−τ(w) for inte-
gers p, w such that p ≥ τ(w) is a basis for D(A). Consequently, the set of monomials
tw+pξp for integers p, w such that p ≥ τ(w) is a basis for gr D(A) considered as a
subring of T [ξ].

Motivated by this fact, we shall introduce the new coordinates (α, β) ∈ Z2

given by α = w + p, β = p. Furthermore, we let Γ′ ∈ Z2 be the subset consisting
of all pairs (α, β) ∈ Z2 such that β ≥ τ(α − β). Then (α, β) ∈ Γ′ if and only if
tαξβ ∈ gr D(A) for integers α, β ∈ Z2. In particular, Γ′ ⊆ Z2 is a semigroup, and
gr D(A) is isomorphic to the semigroup algebra k[Γ′].

If Γ = N0, then Γ′ = N0
2 and gr D(A) ∼= k[t, ξ], so this case is trivial. We

assume that Γ 6= N0, and let (α, β) ∈ Γ′ with w = α − β. Then we have that
τ(w) ≤ β, so let m = β − τ(w) ≥ 0, and put (α′, β′) = (α, β) −m(1, 1). We see
that β′ = β −m = τ(w), and furthermore that

τ(−w) = τ(w) + w = β′ + (α− β) = β′ + (α′ − β′) = α′.

Consequently, any (α, β) ∈ Γ′ can be written uniquely in the form

(α, β) = m(1, 1) + (τ(−w), τ(w))

with m ∈ N0, w ∈ Z\{0}. It follows that the finite set G′ of cardinality 2r+2h+1,
given by

G′ = {(τ(−w), τ(w)) : |w| = a1, . . . , ar or |w| ∈ H} ∪ (1, 1)

is a set of generators of Γ′. We claim that this is a minimal set of generators for Γ′:

Lemma 2.13. Let Γ 6= N0 be a numerical semigroup. Then the set G′ is a minimal
set of generators for Γ′.

Proof. We have already seen that G′ is a set of generators for Γ′. We show that
none of the generators are superfluous: First, notice that (1, 0), (0, 1) 6∈ Γ′, so (1, 1)
is certainly not superfluous. Furthermore, (τ(−w), τ(w)) is given as (ai, 0) if w = ai
and (0, ai) if w = −ai. So by the minimality of the generator set {a1, . . . , ar} for Γ,
none of these generators are superfluous. Let w′ be an integer such that |w′| ∈ H,
and denote by I the set I = {w ∈ Z \ {w′} : |w| ∈ H or |w| = a1, . . . , ar}. We show
that the generator (τ(−w′), τ(w′)) is not superfluous: Assume to the contrary that

(τ(−w′), τ(w′)) =
∑
w∈I

nw(τ(−w), τ(w)) +m(1, 1).

Then w′ =
∑
w∈I nww, and τ(w′) = τ(

∑
w∈I nww) =

∑
w∈I nwτ(w) + m. By

using proposition 2.5 repeatedly, we see that m = 0 and τ(
∑
nww) =

∑
nwτ(w).
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Assume that nw 6= 0 for some w with |w| ∈ H. Then, proposition 2.5 applied to
the sum w′ = w + (w′ − w) gives w = w′, which is impossible. But then |w′| ∈ Γ
by another application of proposition 2.5, and this contradicts the assumption that
the generator (τ(−w′), τ(w′)) is superfluous.

We also notice that all generators in G′ is in N0
2 ⊆ Z2, and that G′ is invariant

under the reflection in the line α = β. We summarize these properties of the
semigroup Γ′ in the following proposition:

Proposition 2.14. Let Γ 6= N0 be a numerical semigroup, and let Γ′ ⊆ Z2 be the
semigroup Γ′ = {(α, β) ∈ Z2 : β ≥ τ(α− β)}. Then

G′ = {(τ(−w), τ(w)) : |w| = a1, . . . , ar or |w| ∈ H} ∪ (1, 1)

is a minimal set of generators of Γ′. Furthermore, Γ′ ⊆ N0
2, N0

2 \ Γ′ is a finite
set, and for all integers α, β, (α, β) ∈ Γ′ if and only if (β, α) ∈ Γ′. In particular,
Γ′ ⊆ Z2 is an affine semigroup.

Proof. The only thing left to prove is the finiteness of N0
2 \ Γ′: For any integer

w, consider the set {(α, β) ∈ Γ′ : α − β = w}. This set has cardinality τ(w) if
w ≥ 0, so by the symmetry of Γ′ it has cardinality τ(−w) if w ≤ 0. From this,
we get |N0

2 \ Γ′| = 2
∑
w∈H τ(w). In particular, the set N0

2 \ Γ′ is finite (of even
cardinality).

We remark that the following formula for the cardinality of N0
2 \ Γ′ was ob-

tained by Jones in his thesis Jones [17]:

|N0
2 \ Γ′| = 2

∑
w∈H

w − h(h− 1).

It is possible to give a much easier proof of this formula using our methods, but we
will not include it here.

Corollary 2.15. Let Γ be a numerical semigroup, and let A = k[Γ] be the corre-
sponding monomial curve. Then gr D(A) is the semigroup algebra gr D(A) ∼= k[Γ′],
where Γ′ ⊆ Z2 is the affine semigroup Γ′ = {(α, β) ∈ Z2 : β ≥ τ(α − β)}. If
Γ 6= N0, then gr D(A) has a minimal generating set

{tτ(−w)ξτ(w) : |w| = a1, . . . , ar or |w| ∈ H} ∪ {tξ},
and if Γ = N0, it has a minimal generating set {t, ξ}. In particular, gr D(A) is a
subring of gr D(A) = k[t, ξ], and the k-algebra gr D(A) has finite type over k and
Krull dimension 2.

In contrast, we mention the following result of Smith and Stafford. Notice that
in general, D(A) is not a subring of D(A). It is therefore rather surprising that
gr D(A) ⊆ gr D(A) for any affine curve.

Theorem 2.16. Let A be a domain of finite type over k of Krull dimension 1. Then
gr D(A) ⊆ gr D(A). Furthermore, the following conditions are equivalent:

i) The normalization map SpecX → SpecX is injective.
ii) The k-algebra gr D(A) is of finite type over k.

iii) The k-algebra gr D(A) is Noetherian.

Proof. See Smith and Stafford [32], proposition 3.11 and theorem 3.12.

Let us consider the Bernstein filtration of D(A), as defined in section 6 of
chapter 1, when A is a monomial curve. In this case, we see that there is a ho-
mogeneous, non-zero differential operator P ∈ Bn(A) of weight w if and only if
(n−w)/2 ≥ τ(w), or equivalently, if and only if n ≥ τ(w) + τ(−w). When |w| ≥ c,
where c is the conductor of Γ, then τ(w) + τ(−w) = |w|. In particular, we have
D(A)w ∩ Bn(A) = 0 when |w| > max{n, c}.
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Corollary 2.17. Let Γ be a numerical semigroup, and A = k[Γ] the correspond-
ing monomial curve. Then the k-vector space Bn(A) has finite dimension for all
integers n.

Proof. This is clear, since each Dp(A)w has finite dimension by proposition 1.17,
and furthermore each Bn(A) is the direct sum of a finite number of these k-vector
spaces.

We remark that gr D(A) is a Z-graded k-algebra via the Bernstein filtration.
From the comment above, there is a non-zero homogeneous differential operator in
Bn(A) of weight w if and only if n ≥ τ(w) + τ(−w). But it is easy to see that
τ(w) + τ(−w) ≥ 0, and equality holds if and only if w = 0. So we see that if
n < 0, then Bn(A) = 0, and if n = 0, then Bn(A) = k. If follows that gr D(A) is a
quasi-homogeneous k-algebra of finite type.

7. An example

We finish this chapter by giving an example: Consider the numerical semigroup
Γ =< 3, 4 >, and let A = k[Γ] = k[t3, t4] be the affine coordinate ring of the
corresponding monomial curve. We have that r = 2, a1 = 3, a2 = 4, g = 5, and
H = {1, 2, 5} in this case. We also notice that Γ is a symmetric, since w ∈ Γ if and
only if 5− w 6∈ Γ for all integers w ∈ Z.

Let I = {w ∈ Z : |w| ∈ H or |w| = a1, . . . , ar}. We calculate the sets Ω(w)
for w ∈ I, and obtain the set G of generators for D(A) as a k-algebra, given by
G = {Pw : w ∈ I} ∪ {P0} with

P0 = E

P1 = tE(E − 4) = t3∂2 − 3t2∂

P2 = t2E(E − 3) = t4∂2 − 2t3∂

P3 = t3

P4 = t4

P5 = t5E = t6∂

P−1 = t−1E(E − 3)(E − 6) = t2∂3 − 6t∂2 + 10∂

P−2 = t−2E(E − 3)(E − 4)(E − 7) = t2∂4 − 8t∂3 + 26∂2 − 36t−1∂

P−3 = t−3E(E − 4)(E − 8) = ∂3 − 9t−1∂2 + 21t−2∂

P−4 = t−4E(E − 3)(E − 6)(E − 9) = ∂4 − 12t−1∂3 + 52t−2∂2 − 80t−3∂

P−5 = t−5E(E − 3)(E − 4)(E − 6)(E − 7)(E − 10)

= t∂6 − 15∂5 + 110t−1∂4 − 490t−2∂3 + 1300t−3∂2 − 1620t−4∂.

We also see that Derk(A) has a minimal generating set {E, t5E} = {t∂, t6∂} as a
left A-module.

We may now easily read off the minimal generating set g of gr D(A) as a k-
algebra. This is given by {pw : w ∈ I} ∪ {p0}, with

p0 = tu,

p1 = t3u2, p2 = t4u2, p3 = t3, p4 = t4, p5 = t6u,

p−1 = t2u3, p−2 = t2u4, p−3 = u3, p−4 = u4, p−5 = tu6

Equivalently, gr D(A) = k[Γ′], where Γ′ is the affine semigroup Γ′ = N0
2 \ H ′,

where H ′ is the finite set given by

H ′ = {(0, 1), (0, 2), (0, 5), (1, 0), (1, 2), (1, 3), (2, 0), (2, 1), (3, 1), (5, 0)}.



CHAPTER 3

D-modules on monomial curves

In this chapter, we study D-modules on monomial curves. We introduce dimen-
sion and multiplicity for D-modules on monomial curves, and define the category of
holonomic D-modules. In order to do this, we need a theory of Hilbert functions on
graded modules over a quasi-homogeneous k-algebra, which we develop in section 2.
We also study certain localization functors, defined on the category of D-modules
and the category of graded D-modules.

1. Basic properties of D-modules

Let A be a commutative k-algebra, and let D(A) be the ring of differential
operators on A. We shall often suppress the ring A from the notation, when no
confusion is likely to arise from this, and write D for the ring D(A). We denote
by a D-module any left D(A)-module M . Furthermore, we denote by D-Mod the
category of D-modules, where the morphisms are left D-module homomorphisms.

We have inclusions k ⊆ A ⊆ D of commutative subrings of D. We see that
k is in the centre of D, whereas A is usually not in this centre. It will often be
convenient to consider a D-module as an A-module or as a vector space over k via
the obvious forgetful functors.

We define the category MC(A;D) in the following way: An object in this
category is a pair (M,ρ), where M is an A-module and ρ : D → D(M) is a
homomorphism of filtered k-algebras. A morphism in this category from the object
represented by (M,ρ) to the object represented by (M ′, ρ′) is a homomorphism
φ : M →M ′ of A-modules, such that the following diagram commutes:

D(M)
D(M,φ)

%%LLLLLLLLLL

D

ρ
<<yyyyyyyyy

ρ′ ""EEEEEEEEE D(M,M ′)

D(M ′)
D(φ,M ′)

99rrrrrrrrrr

Clearly, there is a functor F : MC(A;D) → D-Mod: For any object (M,ρ) in
MC(A;D), we may consider M as a k-vector space, with a D-module structure
given by Pm = ρ(P )(m) for all P ∈ D, m ∈ M . Furthermore, the commutative
diagram above implies that any morphism in the category MC(A;D) is a morphism
of the corresponding D-modules. We shall see that the functor F is in fact an
equivalence of categories between MC(A;D) and D-Mod:

Proposition 3.1. There is a natural equivalence of categories between D-Mod and
MC(A;D).

Proof. Let M be any D-module. Then we may consider M as a k-vector space,
and the D-module structure is given by a homomorphism ρ : D → Endk(M) of
k-algebras. So it is clearly enough to show that the image of ρ is in D(M) when
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M is considered as an A-module, and that the induced morphism ρ : D → D(M)
is a morphism of filtered k-algebras. We show this by induction: First, it is clear
that ρ(Dp(A)) ⊆ Dp(M) when p = 0 (and indeed for p < 0). So assume that the
inclusion holds for some integer p ≥ 0. Let P ∈ Dp+1(A) be a differential operator,
then we have

[ρ(P ), a] = [ρ(P ), ρ(a)] = ρ([P, a])

for all a ∈ A. But [P, a] ∈ Dp(M), so [ρ(P ), a] ∈ Dp(M) for all a ∈ A by
the induction hypothesis. By definition, this means that ρ(P ) ∈ Dp+1(M). So
ρ(Dp+1(A)) ⊆ Dp+1(M), and this concludes the induction argument.

We define the derivation ring of A to be the subring ∆(A) ⊆ D generated by
D1(A) = A⊕Derk(A). This is a filtered subring of D in a natural way, having A as
a subring. If A is a regular integral domain of finite type over k, then ∆(A) = D.
It has been conjectured by Nakai that if A is an integral domain of finite type over
k, then ∆(A) = D if and only if A is regular. This conjecture has been proven
when dimA = 1, see Mount and Villamayor [25].

There are several approaches to the study of D-modules. The classical approach
has been to take the commutative point of view, and study the category MC(A;D).
When A is a regular k-algebra of finite type, this is the same as the study of pairs
(M,∇), where M is a module over the commutative ring A, and ∇ is an integrable
connection of M (or equivalently, an integrable covariant derivative on M). In
chapter 4, we shall consider modules with integrable covariant derivatives when A
is not necessarily regular, which will lead to a theory equivalent to the theory of
∆(A)-modules.

However, the studies of D-modules undertaken by considering the category
MC(A;D) tend to hide the non-commutative aspect of D-module theory. Further-
more, since the notion of a D-module of finite type does not seem to have a natural
counterpart in the category MC(A;D), such studies also tend to concentrate the
attention on D-modules which are of finite type considered as A-modules.

In the rest of this chapter, we shall study D-modules more directly, taking
an essentially non-commutative point of view. The main tools will be the use of
invariants, and a certain localization process to be described later.

2. Hilbert functions on quasi-homogeneous k-algebras

The purpose of this section is to develop a theory for the Hilbert function of
a positively graded module M over a quasi-homogeneous k-algebra A, generalizing
the well-known theory in the case when A is generated by homogeneous elements
of degree 1. The paper Campbell, Geramita, Hughes, Smith and Wehlau [9], from
now on only called CGHSW [9], covers the case M = A. It has also inspired the
work in this section, which does not appear in the literature, as far as we know. We
shall refer to chapter 4 in Bruns and Herzog [8] for the basic results in this section.

Let A be a quasi-homogeneous, commutative k-algebra of finite type, and let
M be a positively graded A-module of finite type. Then A0 = k, and Mn is
an A0-module of finite type for all n ≥ 0. The dimension dimkMn is therefore
finite for all integers n ≥ 0, and we see that it is invariant under isomorphisms
of graded A-modules. We denote by H(M,−) the Hilbert function of M , given by
H(M,n) = dimkMn for all n ≥ 0. Furthermore, we denote by HM (t) the Hilbert
series of M , defined as the power series HM (t) =

∑
H(M,n) tn generated by the

Hilbert function. For the rest of this section, we shall assume that M 6= 0, and we
shall denote the Krull dimension of M by d = dimM = dim(A/ annM).
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Theorem 3.2. Let A be a quasi-homogeneous k-algebra of finite type, and let M be
a non-zero, positively graded A-module of finite type with d = dimM . Then there
exists an integer l ≥ 1 and a polynomial Q(t) ∈ Z[t] with Q(1) > 0, such that

HM (t) =
Q(t)

(1− tl)d

Proof. Let x1, . . . , xd be a homogeneous system of parameters for M , of strictly
positive degrees n1, . . . , nd, and let l = lcm(n1, . . . , nd). Then

x
l/n1
1 , . . . , x

l/nd
d

is another homogeneous system of parameters for M . Since these parameters all
have degree l, the result follows from Bruns and Herzog [8], proposition 4.4.1 and
the following remarks.

We notice that l may be chosen as the least common multiple of the degrees
of any homogeneous system of parameters for M . If it is, let us denote the corre-
sponding graded Noether normalization of M by S. Then it follows from Bruns and
Herzog [8], lemma 4.1.13 that Q(1) = rkSM > 0. But there may exist values for
l which do not occur in this way. For instance, consider the example A = k[t2, t3],
M = A. In this case, we may choose l = 1. But clearly, there is no homogeneous
system of parameters of degree 1, since A1 = 0.

We let L(M) = {l ∈ N0 : HM (t) (1− tl)d ∈ Z[t], l ≥ 1}, and define the period
of M to be m = m(M) = minL(M). This is an invariant of M , and by CGHSW
[9], lemma 2.1, we have that L(M) = {l ∈ N0 : m | l, l ≥ 1}. Let us define the
polynomial QM (t) ∈ Z[t] to be QM (t) = HM (t) (1− tm)d. Since there exists some
l ∈ L(M) such that the corresponding polynomial Q′(t) = HM (t) (1− tl)d satisfies
Q′(1) > 0, and this l is a multiple of m from the description of L(M), we see that
QM (1) > 0 as well.

Proposition 3.3. Let H(t) ∈ Z[[t]] be any non-zero power series H(t) =
∑
hnt

n

with non-negative coefficients hn ≥ 0, and let l, s be non-negative integers with
l ≥ 1. Denote by a(t) the power series a(t) = H(t) (1 − tl)s. Then the following
conditions are equivalent:

i) a(t) is a polynomial in Z[t].
ii) There exist polynomials Pr(t) ∈ Q[t] for 0 ≤ r < l, such that degPr(t) ≤ s− 1

and Pr(n) = hnl+r for all n >> 0.
Furthermore, if the conditions above hold, then a(1) > 0 if and only if Pr(t) has
degree s− 1 for at least one integer r with 0 ≤ r < l.

Proof. See CGHSW [9], proposition 2.3 and remark 2.4.

Assume that the conditions of proposition 3.3 hold. In this case, we follow the
notation of the proof, and write ar(t) for the polynomial ar(t) =

∑
αnl+rt

n ∈ Z[t],
where the coefficients αi for i ≥ 0 are given by a(t) =

∑
αit

i. So we obtain
polynomials a0(t), . . . , al−1(t) ∈ Z[t], and we have a(1) = a0(1) + · · · + al−1(1).
Furthermore, the polynomial Pr(t) has the form

Pr(t) =
ar(1)

(s− 1)!
ts−1 + P ′r(t)

for 0 ≤ r < l, where P ′r(t) is a polynomial in Q[t] of degree degP ′r(t) < s − 1.
Consequently, we see that ar(1) ≥ 0 for all r, and that degPr(t) = s−1 if and only
if ar(1) > 0.

Let us apply proposition 3.3 to the Hilbert series HM (t): We let l = m, s = d
and H(t) = HM (t). Then the first condition of proposition 3.3 is satisfied, with
a(t) = QM (t) and a(1) = QM (1) > 0. So let er = er(M) = ar(1) for 0 ≤ r < m.
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Then er ≥ 0 is a positive integer for 0 ≤ r < m, and
∑
er = QM (1) > 0. We

obtain the following result on the Hilbert function of M :

Corollary 3.4. Let A be a quasi-homogeneous k-algebra of finite type, and let M
be a non-zero, positively graded A-module of finite type with d = dimM . Then
there exist polynomials prM (t) ∈ Q[t] for 0 ≤ r < m, such that deg prM (t) ≤ d − 1,
and prM (n) = HM (nm + r) for all n >> 0. Furthermore, er > 0 for at least one
integer r with 0 ≤ r < m, and if er > 0, then prM (t) has leading term er

(d−1)! t
d−1.

A function f : N0 → N0 is a quasi-polynomial of period l if it is given by
l polynomials p0(t), . . . , pl−1(t) ∈ Q[t], in such a way that f(nl + r) = pr(n) for
0 ≤ r < l, n ≥ 0, and l is the least positive integer with this property. We see that
there exists a unique quasi-polynomial pM of period m, defined by the polynomials
p0
M (t), . . . , pm−1

M (t) given above, such that pM (n) = H(M,n) for all n >> 0. We
denote this quasi-polynomial pM , and call it the Hilbert quasi-polynomial of M .

In fact, the polynomials p0
M (t), . . . , pm−1

M (t) are themselves Hilbert polynomials.
We introduce the degree modules, defined in the following way: For 0 ≤ r < m,
we define A[m; r] =

∑
Anm+r and M [m; r] =

∑
Mnm+r. We say that a ∈ A[m; r]

is homogeneous of degree n if a ∈ Anm+r, and correspondingly that m ∈ M [m; r]
is homogeneous of degree n if m ∈ Mnm+r. If follows that A[m; 0] is a quasi-
homogeneous k-algebra, and that A[m; r],M [m; r] are positively graded A[m; 0]-
modules for 0 ≤ r < m.

Lemma 3.5. Let A be a quasi-homogeneous k-algebra of finite type, and let M be
a non-zero, positively graded A-module of finite type with d = dimM . Then we
have:

i) A[m; 0] is a k-algebra of finite type, and dimA[m; 0] = dimA.
ii) M is a A[m; 0]-module of finite type, and it has Krull dimension d considered

as an A[m; 0]-module.

Proof. The first part is contained in CGHSW [9], proposition 4.2, which shows
that A is an integral ring extension of A[m; 0]. For the second part, it is clear that
M is of finite type over A[m; 0], since A is integral over A[m; 0]. So it is enough
to notice that the ring extension of quotients A[m; 0]M ⊆ AM is integral as well
(where we define AM = A/annA(M) for any A-module M).

From lemma 3.5, we see that M [m; r] is an A[m; 0]-module of finite type for
0 ≤ r < m. Furthermore, corollary 3.4 shows that prM (t) is the Hilbert polynomial
of M [m; r]. Let dr denote the Krull dimension of M [m; r] for all integers r with
0 ≤ r < m such that M [m; r] 6= 0. Then dr ≤ d for all r, and dr = d for at least
one integer r. Even though A[m; 0] is not, in general, generated by homogeneous
elements of degree 1, we have the following result:

Lemma 3.6. Let r be an integer with 0 ≤ r < m. Then, the A[m; 0]-module
M [m; r] has Hilbert polynomial prM (t), and deg prM (t) = dr − 1 if M [m; r] 6= 0.

Proof. The first part is clear. For the last part, let r be some integer such that
M [m; r] 6= 0. We denote by p(t) the Hilbert series of M [m; r], and by s the degree
of the polynomial prM (t). Since prM (t) is the Hilbert polynomial of M [m; r], it
follows from proposition 3.3 that a(t) = p(t) (1− t)s+1 is a polynomial in Z[t] with
a(1) > 0. But from theorem 3.2, we see that there is an integer l ≥ 1 such that
b(t) = p(t)(1 − tl)dr is another polynomial in Z[t] with b(1) > 0. So we have the
polynomial identity a(t)(1− tl)dr = b(t)(1− t)s+1, and s = dr − 1 by counting the
multiplicity of the irreducible factor (t− 1) on each side of this identity.

We define the higher iterated Hilbert functions Hi(M,−) for i ≥ 0 in the
following way: Let H0(M,−) be given by H0(M,n) = H(M,n), and let Hi(M,−)
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be given inductively by

Hi(M,n) =
∑
j≤n

Hi−1(M, j)

for i > 0. The following observation is implicit in Bruns and Herzog [8], lemma
4.1.2: For any integer i ≥ 0, there is a polynomial a(t) ∈ Q[t] of degree s such that
a(n) = Hi(M,n) for all n >> 0 if and only if there is a polynomial b(t) ∈ Q[t] of
degree s+ 1 such that b(n) = Hi+1(M,n) for all n >> 0. Furthermore, if there are
such polynomials, then a(t) has leading term c

s! t
s if and only if b(t) has leading

term c
(s+1)! t

s+1. We use the fact that similar properties hold for quasi-polynomials:

Theorem 3.7. Let A be a quasi-homogeneous k-algebra of finite type, and let M
be a non-zero, positively graded A-module with d = dimM . Then there exist poly-
nomials P rM (t) ∈ Q[t] for 0 ≤ r < m, such that P rM (n) = H1(M,nm + r) for
all n >> 0. Furthermore, the leading term of the polynomial P rM (t) is e

d! t
d for

0 ≤ r < m, where e = e0 + · · ·+ em−1.

Proof. If d = 0, then dimkM is finite by theorem 3.2. So H1(nm+ r) = dimkM
for all n >> 0 and all integers r with 0 ≤ r < m, and prM (t) = er = dimkM [m; r].
We may therefore assume that d > 0. Let us fix an integer r with 0 ≤ r < m, and
calculate H1(M,nm+ r) using the induction formula for H1(M,−):

H1(M,nm+ r) =
∑

j≤nm+r

H(M, j)

=
r∑
s=0

n∑
i=0

H(M, im+ s) +
m−1∑
s=r+1

n−1∑
i=0

H(M, im+ s).

Let us fix an integer s with 0 ≤ s < m. Then, we have that H(M, im+ s) = psM (i)
for all i >> 0, and we obtain the formula

n∑
i=0

H(M, im+ s) =
n∑
i=0

psM (i) +Ds

for all n >> 0, where Ds is an integer constant that only depends on s. Since
psM (t) = es

(d−1)! t
d−1 + p′s(t) with deg p′s(t) < d − 1, the observation preceeding the

theorem implies the following result: For all integers s with 0 ≤ s < m, there is
a polynomial Ps(t) ∈ Q[t] of the form Ps(t) = es

d! t
d + P ′s(t) with degP ′s(t) < d,

such that Ps(n) =
∑
i≤n H(M, im + s) for all n >> 0. Consequently, we have the

formula

H1(M,nm+ r) =
∑

0≤s≤r

Ps(n) +
∑

r<s<m

Ps(n− 1)

for all n >> 0. So let P rM (t) = P0(t) + · · ·+Pr(t) +Pr+1(t− 1) + · · ·+Pm−1(t− 1).
Then P rM (t) ∈ Q[t] is a polynomial of degree d and with leading term e

d! t
d, where

e = e0 + · · ·+ em−1. But P rM (n) = H1(M,nm+ r) for all n >> 0, which concludes
the proof of the theorem.

We define the first iterated Hilbert quasi-polynomial of M to be the quasi-
polynomial PM of period m defined by the polynomials P 0

M (t), . . . , Pm−1
M (t). From

theorem 3.7, it follows that all the polynomial components P rM (t) of this quasi-
polynomial have the same leading term e

d! t
d with e = e0 + · · · + em−1. We define

the multiplicity of M to be e = e(M) = e0 + · · ·+em−1, which is clearly an invariant
of M . We see that e(M) is a strictly positive integer if M 6= 0. Furthermore, the
cardinality of the set {r : er 6= 0} = {r : dr = d} is a lower bound for e(M).

Finally, the following remark is in order: Let M be any graded module over a
quasi-homogeneous k-algebra A. If M is of finite type, there exists some integer n
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such that Mi = 0 for all i < n: This is clear, it is enough to let n be the minimal
degree of a finite set of homogeneous generators of M . But then the twisted A-
module M(n) is positively generated, and the Hilbert function of M is related to
the Hilbert function of M(n) by the equation H(M, i) = H(M(n), i − n). So the
condition that M is positively graded, imposed in this section, is not essential.

3. Dimension and multiplicity

Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding monomial
curve, and let D be the ring of differential operators on A. We recall that the Bern-
stein filtration {Bn(A)} is an exhaustive, ascending filtration of the k-algebra D,
and that the associated graded ring grD is a Z-graded k-algebra via the Bernstein
filtration. Notice that grD is a quasi-homogeneous k-algebra of finite type.

LetM be a D-module. We denote by a filtration ofM any ascending, exhaustive
filtration {Mn : n ∈ Z} of M compatible with the Bernstein filtration of D, such
that Mn = 0 for n < 0 and Mn is a finite dimensional vector space over k for all
integers n ≥ 0. For any filtration (Mn) of M , we consider the associated graded
grD-module grM = ⊕Mn/Mn−1. This is a positively graded grD-module, and it
will of course depend upon the chosen filtration. We say that the filtration (Mn) is
a good filtration if grM is a grD-module of finite type. From Björk [3], proposition
2.6.1, we see that there exists a good filtration of a D-module M if and only if M
is of finite type over D.

We shall only be interested in D-modules of finite type. From now on, a D-
module will therefore denote a D-module of finite type. Consequently, all D-modules
have a good filtration. A good filtration is usually not unique, but we have the
following result:

Lemma 3.8. Let M be a D-module. If (Mn), (M ′n) are two good filtrations of M ,
then there exists a integer p ≥ 0 such that M ′n−p ⊆Mn ⊆M ′n+p for all integers n.

Proof. See Björk [3], proposition 2.6.1.

Let M be a non-zero D-module, and let (Mn) be any good filtration of M . Then
the associated graded module grM is non-zero, so the conditions of theorem 3.7 is
satisfied for the grD-module grM . Consequently, there exists a quasi-polynomial
P : N0 → N0 such that dimkMn = P (n) for all n >> 0. Let d = dim grM and
let e be the multiplicity of grM . We see from lemma 3.8 that d, e are independent
upon the good filtration (Mn). We define the dimension of the D-module M to be
d = d(M) = dim grM , and the multiplicity e = e(M) of M to be the multiplicity
of grM . We see that the dimension and multiplicity of M are well-defined, non-
negative integers with d ≥ 0, e ≥ 1. We also remark that d = 0 if and only if M is
a finite dimensional vector space over k, see theorem 3.2.

Consider the example M = D. Clearly, the Bernstein filtration of D is a
good filtration, and dimk Bn(A) = 1

2 (n + 1)(n + 2) − r for n >> 0, where r is the
cardinality of the finite set N0

2\Γ′. Consequently, we have d(D) = 2 and e(D) = 1.

Proposition 3.9. Let 0 → N → M → P → 0 be an exact sequence of non-zero
D-modules. Then we have:

i) d(M) = max{d(N), d(P )}.
ii) If d(N) = d(P ), then e(M) = e(N) + e(P ).

iii) If d(N) > d(P ), then e(M) = e(N), and if d(P ) > d(N), then e(M) = e(P ).

Proof. Denote the morphisms f : N → M and g : M → P , and let (Mn) be
a good filtration of M . Then there are induced filtrations (Nn) of N and (Pn)
of P , given by Nn = f−1(Mn) and Pn = g(Mn) for all integers n. We obtain
an exact sequence of grD-modules 0 → grN → grM → grP → 0, and grD is
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a Noetherian ring. Since (Mn) is a good filtration, the same holds for (Nn) and
(Pn). But dimkMn/Mn−1 = dimkNn/Nn−1 + dimk Pn/Pn−1 for all n ≥ 0, and
Mn = Nn = Pn = 0 for n < 0, so dimkMn = dimkNn + dimk Pn for all n ≥ 0.
Consequently, PM (n) = PN (n) + PP (n) for all n ≥ 0, and the result follows.

Corollary 3.10. Let f : M → M ′ be an isomorphism of non-zero D-modules.
Then d(M) = d(M ′) and e(M) = e(M ′). In particular, the dimension d(M) and
the multiplicity e(M) of a D-module M are invariants of M .

Proof. From the proof of proposition 3.9, we see that PM (n) = PM ′(n) for all
n ≥ 0. The rest is clear.

Let M be a non-zero D-module, then there is a surjection Dn → M of D-
modules for some n ≥ 0. Since d(D) = 2, e(D) = 1, we see from proposition
3.9 that d(Dn) = 2 and e(Dn) = n. If follows that d(M) ≤ d(Dn) = 2 for any
D-module. A more interesting fact is that there is a lower bound for the dimension
of D-modules. This lower bound is classically known as Bernstein’s inequality :

Proposition 3.11. Let M be a non-zero D-module. Then d(M) ≥ dimA = 1.

Proof. Assume that M is non-zero and d(M) = 0. Then M is of finite type as
vector space over k. By corollary 2.9, D is a simple ring. So the ring homomor-
phism D → Endk(M) defining the D-module structure on M is an injective ring
homomorphism, since M 6= 0. But Endk(M) is a finite dimensional vector space
over k, and D is clearly not of finite dimension as a vector space over k, so this is
a contradiction.

We say that a D-module M is holonomic if M = 0 or if M 6= 0 and d(M) = 1.
Let 0 → N → M → P → 0 be an exact sequence of D-modules. Then M is
holonomic if and only if N and P are holonomic: This is clear from proposition 3.9.
So in particular, submodules and quotients of holonomic modules are holonomic,
and extensions of holonomic modules are holonomic. We also see that any finite
sum of holonomic modules is holonomic: This is clear, since such a sum is a quotient
of a direct sum of holonomic modules.

Lemma 3.12. Let I ⊆ D be a non-zero left ideal in D. Then D/I is a holonomic
D-module.

Proof. Assume that I is generated by a non-zero operator P ∈ D. Then we
have an exact sequence of D-modules 0 → D → D → D/I → 0 induced by the
right multiplication with P on D. If d(D/I) = 2, then e(D) = e(D) + e(D/I)
by proposition 3.9. This means that e(D/I) = 0, which is a contradiction. So
d(D/I) = 1 or D/I = 0, and D/I is holonomic. For the general case, assume that
I ⊆ D is a non-zero left ideal, and choose a non-zero operator P ∈ I. Let J be the
left ideal J = DP ⊆ I, and consider the short exact sequence

0→ I/J → D/J → D/I → 0.

We know that D/J is holonomic, so D/I is a quotient of a holonomic module, and
hence holonomic.

Proposition 3.13. Let M be a D-module. Then M has finite lenght if and only if
M is Artinian, and the following conditions are equivalent:

i) M is holonomic.
ii) M is Artinian.

iii) M is cyclic and not isomorphic to D.
iv) M is a torsion D-module.
Furthermore, if M is non-zero and satisfies these conditions, then M has finite
length l(M) ≤ e(M).
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Proof. Clearly, all conditions are satisfied if M = 0, as we may assume that
M 6= 0. First, assume that M is holonomic. Then M has finite length l(M) ≤ e(M):
If M0 ⊆M1 ⊆ · · · ⊆Mn ⊆ . . . is a chain a submodules of M , then e(Mi) < e(Mi+1)
for all integers i, since each submodule of M is holonomic. But e(M) is finite, so
the length of such chains is bounded by l(M) ≤ e(M). In particular, M is Artinian.
Secondly, assume that M is Artinian. Since D is a simple ring, but not left Artinian,
M is cyclic by Björk [3], theorem 1.8.18, and M is not isomorphic to D since D is
not left Artinian. Thirdly, assume that M is cyclic, but not isomorphic to D. Then
M ∼= D/I for some non-zero left ideal I ⊆ D, and M is holonomic by lemma 3.12.
So the three first conditions in the proposition are equivalent. But M is holonomic
if and only if M is a torsion D-module: Assume that M is a torsion D-module,
generated by m1, . . . ,mn. Then Dmi is a cyclic D-module not isomorphic to D for
all i, since mi is a torsion element. So Dmi ⊆M is holonomic for all i, and M is a
sum of holonomic modules, and therefore holonomic. Conversely, assume that M
is holonomic, and let m ∈M be a non-zero element. Consider the homomorphism
D → M of D-modules given by P 7→ Pm for all P ∈ D. Since Dm ⊆ M , Dm
is holonomic. So if the homomorphism is injective, D is holonomic as well, which
is a contradiction. Consequently, m ∈ M is a torsion element, and M is a torsion
D-module.

Let M be a D-module. If M is non-holonomic, then there exists an element
m ∈M which is not a torsion element by proposition 3.13. This element gives rise
to an exact sequence of D-modules

0→ D →M →M/Dm→ 0,

where D → M is defined by right multiplication with m. If M/Dm is non-
holonomic, we have e(M/Dm) = e(M)− 1. This argument points in the direction
of the following structural result:

Proposition 3.14. Let M be a non-holonomic D-module with n = e(M). Then
there exists an injective D-module homomorphism φ : Dn → M such that the
cokernel of φ is an holonomic D-module.

Proof. We shall find elements m1, . . . ,mn such that the corresponding mor-
phism of D-modules φn : Dn →M , given by φn(P1, . . . , Pn) = P1m1 + · · ·+Pnmn,
is injective. From the argument preceeding the proposition, we know that we can
find an element m1 ∈ M such that φ1 : D → M is injective. If n = 1, we are
done. We show that if m1, . . . ,ml ∈ M such that φl : Dl → M is injective and
1 ≤ l < n, then there exists an element ml+1 ∈ M such that φl+1 : Dl+1 → M is
injective: Since l < n, cokerφl is non-holonomic, and there exists some ml+1 ∈ M
such that the image of ml+1 in cokerφ is not a torsion element. But this means
that Pml+1 ∈ Dm1 + · · · + Dml implies P = 0 for all P ∈ D, so the morphism
φl+1 : Dl+1 → M is injective. So by induction on l, there exist m1, . . . ,mn ∈ M
such that φn : Dn → M is an injection of D-modules. But assume that cokerφn
is non-holonomic. Then e(cokerφn) = e(M) − n = 0, which is a contradiction.
Consequently, cokerφn is holonomic.

We denote by Iso(R) the set of isomorphism classes of left R-modules of finite
type for any k-algebra R. Let S be a subset of Iso(R). We define the set of extension
of extensions of S in the following way: Let E0(S) = S, and for all integers n ≥ 1, we
define En(S) ⊆ Iso(R) inductively as the set of isomorphism classes of R-modules
which are extensions of a R-module in En−1(S) with an R-module in S. We say
that an R-module M is an extension of extensions of S if the isomorphism class of
M is in En(S) for some integer n ≥ 0, and we denote by E(S) = ∪En(S) the set
of extensions of extensions of S.
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Let F denote the subset of Iso(D) consisting of the isomorphism classes of the
simple D-modules and of the trivial D-module D. We refer to F ⊆ Iso(D) as the
fundamental set of isomorphism classes of D-modules. From proposition 3.14, we
see that for any D-module M , there is a finite subset F (M) ⊆ F such that M
is an extension of extensions of F (M). If M is holonomic, then F (M) consists
of simple modules, and the well-known results on composition series of modules
of finite length applies. If M is non-holonomic, then F (M) consists of the trivial
D-module, and possibly a finite number of simple D-modules.

A simple example will clarify the situation in the non-holonomic case: Let
M = D be the trivial D-module. Then, for any non-zero differential operator
P ∈ D, we have an exact sequence

0→ D → D → D/DP → 0,

where D → D is given by right multiplication with P . So D can be obtained as
an extension of the holonomic D-module D/DP with the trivial D-module D, or
it can simply be considered as the trivial D-module D. Furthermore, there is no
bound on the length of the holonomic D-module D/DP , when P ∈ D is non-zero:
Indeed, if α ∈ k \Z, then D/D(E −α) is a simple module by Dixmier [11], lemma
24, and D/D(E − α)n is a holonomic D-module of length n.

We end this section by making some comments on the Morita equivalence: Let
Γ be a numerical semigroups, let A = k[Γ] be the corresponding monomial curve,
and let D be the ring of differential operators on A. Furthermore, let D be the
first Weyl algebra A1(k) corresponding to the numerical semigroup N0. Then, we
know from corollary 2.9 that D and D are Morita equivalent, so any D-module M
corresponds to a uniquely defined D-module M . It is clear that M is Artinian if
and only if M is Artinian, and if this is the case, then l(M) = l(M). Consequently,
the dimension d(M) and the length l(M) are Morita equivalent invariants of D-
modules over monomial curves. However, it is not known if the multiplicity e(M)
is a Morita equivalent invariant.

4. The characteristic variety

Let M be any D-module, and let (Mn) be a good filtration of M . We denote
by I(M) the characteristic ideal of M , which is defined by the equation

I(M) = rad(ann(grM)).

It is clear that I(M) ⊆ grD is an homogeneous ideal. We shall prove that it is
independent upon the chosen good filtration of M .

Lemma 3.15. Let M be a D-module, let (Mn), (M ′n) be two filtrations of M , and
let I(M), I(M)′ be the characteristic ideals of M with respect to these filtrations.
If (Mn), (M ′n) are good filtrations of M , then I(M) = I(M)′.

Proof. By symmetry, it is enough to show that I(M) ⊆ I(M)′, and since these
ideals are homogeneous, it is enough to show that any homogeneous element in
I(M) is in I(M)′. So let f ∈ I(M) be homogeneous of degree s, represented by
P ∈ Bs(A). Since f ∈ I(M), we see that PmMn ⊆ Mn+ms−1 for all integers n.
By q iterations of this formula, we see that P qmMn ⊆ Mn+q(ms−1) for all integers
n and for all q ≥ 1. But from lemma 3.8, we know that there exists some integer
p such that M ′n−p ⊆ Mn ⊆ M ′n+p for all integers n, since (Mn), (M ′n) are good
filtrations of M . Let q = 2p+ 1, then we have

P qmM ′n ⊆ P qmMn+p ⊆Mn+p+q(ms−1) ⊆M ′n+2p+q(ms−1) = M ′n+qms−1

for all integers n. Consequently, fqm ∈ ann grM , where grM is the graded module
associated to the filtration (M ′n). This means that f ∈ I(M)′, which is what we
wanted to prove.
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We see that if M,M ′ are isomorphic D-modules, then I(M) = I(M ′). It follows
that the characteristic ideal I(M) is an invariant of M . Furthermore, I(M) = grD
if and only if M = 0.

Let V (Γ) be the affine variety V (Γ) = Spec(grD) corresponding to the commu-
tative affine semigroup ring grD. We define the characteristic variety Char(M) of a
non-zero D-module M to be the the closed subspace Char(M) = V (I(M)) ⊆ V (Γ).
This is an affine scheme over k with corresponding k-algebra (grD)/I(M), which
is a reduced k-algebra of finite type, but it is not in general an integral domain. It
follows that Char(M) is a (not necessarily irreducible) affine variety. By definition,
(grD)/I(M) has Krull dimension d(M), so Char(M) has dimension d(M) as well.
It is clear that Char(M) is an invariant of M .

Proposition 3.16. Let 0 → M ′ → M → M ′′ → 0 be an exact sequence of D-
modules. Then Char(M) = Char(M ′) ∪ Char(M ′′).

Proof. Choose a good filtration of M , and let M ′,M ′′ have the induced filtrations.
Then we obtain an exact sequence of graded grD-modules associated to these
filtrations, 0 → grM ′ → grM → grM ′′ → 0. From this exact sequence, we see
that we have inclusions of homogeneous ideals

ann(grM ′) ann(grM ′′) ⊆ ann(grM) ⊆ ann(grM ′) ∩ ann(grM ′′).

But V (ab) = V (a ∩ b) = V (a) ∪ V (b) for arbitrary ideals a, b, and this proves the
proposition.

We see that Char(M) = V (Γ) if M is a non-holonomic D-module, since we
have Char(D) = V (Γ), and Dn ⊆ M with n = e(M) > 0 for all non-holonomic
D-modules M . Furthermore, Char(M) is a curve for all non-zero D-modules which
are holonomic.

Let P ∈ D be a non-zero differential operator, and consider the holonomic
D-module M = D/DP , with free resolution given by

0→ D → D →M → 0,

where D → D is given by right multiplication by P . Let the middle term have the
Bernstein filtration, which is a good filtration. Then the other terms have induced,
good filtrations, and we obtain the following exact sequence of grD-modules

0→ grD → grD → grM → 0,

where the homomorphism grD → grD is given by (right) multiplication of the
equivalence class P ∈ grD. It follows that ann(grM) is the homogeneous, principle
ideal in grD generated by P , and the characteristic variety is the (not necessarily
irreducible) curve V (P ) ⊆ V (Γ).

Let us calculate some examples: Let Γ = N0, then the corresponding ring
of differential operators is D = A1(k). Clearly, grD = k[t, ξ] for Γ = N0. We
consider the D-module M = D/DP : First, let P = ∂, then M ∼= A = k[t], and
P = ξ. Consequently, Char(M) = V (ξ) ⊆ A2, so Char(M) ∼= A1 in this case.
Secondly, let P = E = t∂. Then P = tξ, and Char(M) = V (tξ) ⊆ A2, which is a
curve with two irreducible components and an isolated singularity in the origin.

It is not hard to see that for any numerical semigroup Γ, the simple D-module
M = A = k[Γ] has characteristic variety Char(M) = SpecA. Consequently, the
isomorphism class of the characteristic variety is not invariant under the Morita
equivalence between D and D.

5. The Morita equivalence

Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding monomial
curve, and let D = D(A) be the ring of differential operators on A. Then, we know
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from corollary 2.9 that D is Morita equivalent to the Weyl algebra D = A1(k). In
this section, we shall study this Morita equivalence in more detail.

Let us denote by D-Mod the category of D-modules, and by D-Mod the cat-
egory of left D-modules of finite type. We know that the Morita equivalence of
D and D means that there exists an equivalence between the category of left D-
modules and left D-modules. Furthermore, a left D-module M is of finite type over
D if and only if the corresponding left D-module M is of finite type over D. So we
have equivalences of categories

F : D-Mod→ D-Mod,

G : D-Mod→ D-Mod .

Since A ⊆ A ⊆ T = k[t, t−1], where T may be considered as a localization of
A or A with respect to a multiplicatively closed subset consisting of homogeneous
elements, we may consider the rings D,D as graded subrings of D(T ). In fact,
we have the identifications of graded rings D = {P ∈ D(T ) : P ∗ A ⊆ A} and
D = {P ∈ D(T ) : P ∗A ⊆ A}. We define D(A,A) = {P ∈ D(T ) : P ∗A ⊆ A}, and
D(A,A) = {P ∈ D(T ) : P ∗A ⊆ A} using these identifications. Clearly, D(A,A) is
a D-D bimodule in D(T ), and D(A,A) is a D-D bimodule in D(T ).

Lemma 3.17. We have D(A,A) = DA(A,A) and D(A,A) = DA(A,A).

Proof. From Smith and Stafford [32], lemma 2.7, it follows that the equation
DA(A,A) = {P ∈ D : P ∗ A ⊆ A} holds. But {P ∈ D : P ∗ A ⊆ A} = D(A,A)
from corollary 1.6, since T is a localization of A. From Smith and Stafford [32],
proposition 3.14, we also see that DA(A,A) = {P ∈ D(K) : P ∗ A ⊆ A}, where K
is the field of fractions of A. But we have inclusions

DA(A,A) ⊆ {P ∈ D(T ) : P ∗A ⊆ A} ⊆ {P ∈ D(K) : P ∗A ⊆ A},

since S−1 DA(A,A) ∼= D(T ) when S = {x ∈ A : x 6= 0, x is homogeneous } from
Smith and Stafford [32], lemma 2.7. Consequently, both inclusions are equalities,
and DA(A,A) = D(A,A).

The results in Smith and Stafford [32], section 3.14, show that the equivalences
of categories F : D-Mod → D-Mod and G : D-Mod → D-Mod are implemented
in the following way: For all D-modules M , we have F (M) = P ⊗DM , and for all
D-modules M , we have G(M) = P ∗ ⊗DM . Furthermore, P, P ∗ are the bimodules
given by P = D(A,A) and P ∗ = D(A,A).

We know that D(T ) is Z-graded k-algebra with graded subrings D,D. There-
fore, D(T ) has a natural Z-graded structure as left and right D-module and as
left and right D-module. Let P ∈ D(T ) be a non-zero differential operator, and
let P =

∑
Pw be the unique decomposition in homogeneous differential operators

Pw of weight w. If P ∈ D(A,A), then Pw ∈ D(A,A) for all integers w, and if
P ∈ D(A,A), then Pw ∈ D(A,A) for all integers w: This is clear, since A and A are
Z-graded rings. Consequently, D(A,A) and D(A,A) are Z-graded sub-bimodules
of D(T ).

We shall in fact describe the graded structure of these bimodules explicitly, fol-
lowing the strategy used in the proof of theorem 2.2: For any pair Γ,Γ′ of numerical
semigroups, we write Ωw(Γ/Γ′) = {γ ∈ Γ : γ+w 6∈ Γ′} for all integers w ∈ Z. Then
clearly, Ωw(Γ/Γ′) is a finite set, and we define the characteristic polynomial of w
relative to Γ/Γ′ to be the polynomial in k[ξ] given by

χw(Γ/Γ′) =
∏

γ∈Ωw(Γ/Γ′)

(ξ − γ)
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for all integers w. Clearly, this is a monic polynomial, and its degree equals the
cardinality of Ωw(Γ/Γ′). Using this notation, we obtain:

Proposition 3.18. Let Γ be any numerical semigroup, let A = k[Γ] be the corre-
sponding monomial curve, and let D be the ring of differential operators of A. Then
we have

D(A,A) = ⊕
w
P−w k[E],

D(A,A) = ⊕
w
P+
w k[E],

where P−w , P
+
w ∈ D(T ) are differential operators given by P−w = twχw(N0/Γ)(E)

and P+
w = twχw(Γ/N0)(E) for all integers w.

Proof. This follows from the proof of theorem 2.2 and corollary 2.3.

An important consequence of these results, is that the Morita equivalence in-
duces an equivalence between Z-graded D-modules and Z-graded D-modules:

Proposition 3.19. Let M be a Z-graded D-module, and let M be a Z-graded D-
module. Then F (M) is a Z-graded D-module and G(M) is a Z-graded D-module
in a natural way.

Proof. This is clear, since a tensor product of two graded modules has a natural
graded structure, see Năstăsescu and Van Oystaeyen [29], section I.3.4.

6. Localizations

Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding monomial
curve, and let D = D(A) be the ring of differential operators on A. Since A is an
integral domain, the set S = A \ {0} is a multiplicatively closed subset of A. We
shall denote by K = S−1A the field of fractions of A, and we see that K = k(t)
for all numerical semigroups Γ. Clearly, the localization map A → K is injective,
and we shall always identify the monomial curve A = k[Γ] with its image in K, and
also identify A with its image in K via A = k[N0].

From proposition 1.5, we see that the non-commutative ringD has a localization
with respect to any multiplicatively closed subset in A. In particular, this applies
to the set S, so S is an Ore set for D. We also see that D(K) is the localization of D
with respect to S. Equivalently, there is a natural isomorphism of K-D bimodules
K ⊗A D ∼= D(K).

Let us give an explicit description of the ring D(K): We observe that in par-
ticular, we have an isomorphism K ⊗A D ∼= D(K) for the numerical semigroup
Γ = N0, so D(K) ∼= k(t) ⊗k[t] D, where D = A1(k) is the Weyl algebra. This
means that any non-zero differential operator P ∈ D(K) can be written uniquely
in the form

P =
p∑
i=0

ci∂
i,

where ci ∈ k(t) is a rational function for 0 ≤ i ≤ p, and p = d(P ) is the order of P .

Lemma 3.20. The ring D(K) has a left and right Euclidean division algorithm.
In particular, D(K) is a PI domain.

Proof. Let P,Q be non-zero differential operators in D(K) of orders p and q.
We show by induction on p that there exist differential operators L,R such that
P = LQ + R with d(R) < q: If p = 0, then we let L = 0, R = P if q > 0, and we
let L = P/Q and R = 0 if q = 0. Let us assume that p > 0. If p < q, then we
let L = 0, R = P , and there is nothing to prove. If p ≥ q, write cp∂p and c′q∂

q
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for the leading coefficients of P and Q, and write P ′ = P − (cp/c′q∂
p−q)Q. Then

clearly, d(P ′) < d(P ), so by the induction hypothesis, P ′ = L′Q+R for differential
operators L′, R ∈ D(K) with d(R) < q. We obtain P = (L′ + cp/c

′
q∂
p−q)Q + R′.

So by induction, D(K) has a left Euclidean division algorithm, and by a similar
argument it has a right Euclidean division algorithm, as well.

A direct computation shows that d(PQ) = d(P ) + d(Q) for all differential
operators P,Q ∈ D(K). This means that all units in the ring D(K) have order 0,
and since K is a field, the units are exactly D(K)∗ = K∗ = K \ {0}.

Let M be a D-module. We say that an element m ∈M is an S-torsion element
if sm = 0 for some s ∈ S. That is, m is an S-torsion element if and only if
annA(m) = annD(m) ∩ A ⊆ A is a non-zero ideal, or equivalently, if the element
m ∈M is a torsion element when M is considered as an A-module. We denote by

TS(M) = {m ∈M : sm = 0 for some s ∈ S} ⊆M

the set of S-torsion elements in M . This is a D-module, since S is an Ore set for D.
We say that M is S-torsion free if TS(M) = 0, and that M is an S-torsion module
if TS(M) = M . Notice that if M is a simple D-module, then M is an S-torsion free
module or an S-torsion module.

Let M be any left D(K)-module of finite type. We define the degree of N to
be degN = dimK N . Clearly, the degree is an invariant of N , but it is not finite in
general. However, if N is a cyclic D(K)-module which is not isomorphic to D(K),
then degN is finite: Let n ∈ N be a cyclic generator, and put I = ann(n) ⊆ D(K).
Then I is a non-zero left ideal in D(K), and therefore generated by some non-zero
differential operator P ∈ D(K). Let d(P ) = d, then we may choose P with leading
term ∂p, since K∗ are units in D(K). So the set {n, ∂n, . . . , ∂d−1n} is a basis for
N as a K-linear space, and degN = d.

Let M be a D-module, then clearly S−1M = S−1D⊗DM is a left D(K)-module
of finite type. We define the degree of M to be degM = degS−1M , which may
be infinite or a non-negative integer, as the case may be. If M is holonomic, then
N = S−1M is a cyclic B-module, not isomorphic to B, so degM is finite. If M
is non-holonomic, then Dn ⊆ M with n = e(M) ≥ 1 from proposition 3.14. But
D(K) has K-linear basis {∂i : i ≥ 0}, so deg D(K) is infinite. Consequently, degM
is infinite for any non-holonomic D-module M .

Proposition 3.21. Let M be a D-module. Then the degree of M is finite if and
only if M is holonomic, and the degree is an additive function on the category of
holonomic D-modules. Furthermore, we have degM = 0 if and only if M is an
S-torsion module.

There is a natural covariant functor S−1 : D-Mod → D(K)-Mod, given by
M 7→ S−1M for all D-modules M . Since it is a localization functor, it follows that
S−1 is an exact functor. Moreover, we have a diagram of functors

D(K)-Mod

D-Mod

S−1
88qqqqqqqqqqq G //

D-Mod

(S)−1
ffNNNNNNNNNN

F
oo

where S = A \ {0}. We show that this is a commutative diagram of functors, in
the sense that the localization functors commute with the equivalence of categories
between D-Mod and D-Mod:
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Proposition 3.22. Let M be a D-module, and let M = G(M) be the D-module
corresponding to M under the Morita equivalence. Then S−1M ∼= (S)−1M . In
particular, the degree of a D-module is invariant under Morita equivalence.

Proof. Clearly, S ⊆ S ⊆ A is a multiplicatively closed subset of A. Since
(S)−1M ∼= K ⊗A M ∼= S−1M , it is enough to prove S−1M ∼= S−1M . But
M = D(A,A) ⊗D M , and S−1 D(A,A) ∼= D(K) from Smith and Stafford [32],
remark 1.3 (d). So we have S−1M ∼= D(K)⊗D M ∼= K ⊗AM ∼= S−1M .

The following observation will be useful later on: From proposition 3.21, we
see that a D-module is an S-torsion module if and only if degM = 0. Furthermore,
proposition 3.22 shows that the degree of a module is invariant under Morita equiv-
alence. So it follows that the property of being an S-torsion module is invariant
under Morita equivalence.

7. Graded localizations

We shall adapt the localization techniques described in section 6, which were
introduced in Block [4], to the graded situation. So for the rest of this section, we
let S be the multiplicatively closed subset S = {x ∈ A : x 6= 0, x is homogeneous}.
Then S−1A ∼= T is a graded ring, and S−1D ∼= D(T ) ∼= T ⊗A D is graded as well.

We say that a D-module M is a graded D-module if M has a Z-graded structure
M = ⊕Mi compatible with the natural graded structure on the k-algebra D. For
any graded module M and any integer n, we denote by M [n] the n’th twisted D-
module of M . M [n] is a graded D-module with the same underlying D-module
structure as M , such that M [n]i = Mn+i for all integers i. We see that any graded
D-module M has a localization S−1M = D(T ) ⊗D M which is a graded D(T )-
module.

We already know the ring structure of D(T ) quite well. We recall that any
homogeneous differential operator P ∈ D(T ) of weight w and order p has the form

P =
p∑
i=0

cit
i+w∂i

with ci ∈ k for 0 ≤ i ≤ p and cp 6= 0. Furthermore, the graded left and right ideals
in D(T ) are principal:

Lemma 3.23. Let P,Q be homogeneous differential operators in D(T ) with Q 6= 0.
Then there exist unique homogeneous differential operators L,R and L′, R′ in D(T )
such that P = LQ+ R, P = QL′ + R′ and d(R), d(R′) < d(Q). In particular, any
left or right graded ideal in D(T ) is principal.

Proof. We may assume that P 6= 0, so let p = d(P ), q = d(Q) and let w,w′ be the
weights of P,Q. We show that there exist homogeneous differential operators L,R
of weights w −w′, w such that P = LQ+R and d(R) < q (where we allow L,R to
be zero) by induction on p: If p = 0, then we let L = 0, R = P if q > 0, and we let
L = PQ−1 and R = 0 if q = 0. Let us assume that p > 0. If p < q, then we let
L = 0, R = P , and there is nothing to prove. If p ≥ q, write cptp+w∂p and c′qt

q+w′∂q

for the leading coefficients of P and Q, and write P ′ = P−(cp/c′qtp+w−q−w
′
∂p−q)Q.

Then clearly, P ′ is a homogeneous differential operator of weight w, and we have
d(P ′) < d(P ), so by the induction hypothesis, P ′ = L′Q + R for homogeneous
differential operators L′, R ∈ D(T ) of weights w−w′, w which satisfy d(R) < q. We
obtain P = (L′ + cp/c

′
qt
p+w−q−w′∂p−q)Q + R. So the existence of L,R follows by

induction, and the uniqueness is clear. The right division algorithm can be proved
in a similar way.
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Let M be a graded D-module. We say that an element m ∈M is an S-torsion
element if sm = 0 for some s ∈ S, and we write TS(M) ⊆ M for the subset of M
consisting of S-torsion elements. Let m =

∑
mi be the unique decomposition of

m ∈ M in homogeneous elements mi ∈ Mi. Then m ∈ TS(M) if and only if there
exists a homogeneous element s ∈ S such that smi = 0 for all i. Since S is an Ore
set with respect to D, TS(M) is a invariant under D, and hence TS(M) ⊆ M is a
graded D-submodule. We say that M is an S-torsion module if TS(M) = M , and
that M is an S-torsion free module if TS(M) = 0.

For any Z-graded ring R, we say that a graded R-module M is gr-simple if 0,M
are the only homogeneous R-submodules of M . Clearly, every graded R-module
which is simple, is gr-simple. The following proposition shows that the converse
statement holds for graded D-modules. We shall therefore make no distinction
between gr-simple D-modules and simple, graded D-modules in the remainder of
this thesis.

Proposition 3.24. Let Γ be a numerical semigroup, let A = k[Γ] be the corre-
sponding monomial curve, and let D be the ring of differential operators on A.
Then a graded D-module M is gr-simple if and only if it is simple.

Proof. Let M be a gr-simple D-module M , and let m ∈M be a non-zero, homo-
geneous element. We denote by I = {P ∈ D : Pm = 0} the annihilator of m. There
is an isomorphism of graded D-modules D/I →M of degree deg(m), given by right
multiplication with m. Since I 6= D, M is an Artinian D-module by lemma 3.12,
and in particular M is not 1-critical. But from Năstăsescu and Van Oystaeyen [29],
theorem II.7.5, any gr-simple D-module M has an underlying D-module structure
which is either simple or 1-critical. So it follows that the D-module M is simple,
and this proves the proposition.

There is a natural functor S−1 : D-Mod→ D(T)-Mod, given by M 7→ S−1M ,
and we have seen that if M is a graded D-module, then S−1M is a graded D(T )-
module. By an argument very similar to the proof of proposition 3.22, we have the
following diagram of functors, where all the triangles commute:

D(T)-Mod

D-Mod

S−1
88qqqqqqqqqqq G //

D-Mod

(S)−1
ffMMMMMMMMMMM

F
oo

Furthermore, all these functors preserve the relevant graded structures. We also
remark that if M is a graded D-module, then S−1M = 0 if and only if M is an
S-torsion module.

For any associative k-algebra R, let us denote by Simple(R) the set of iso-
morphism classes of simple left R-modules and by Simple(R)[P ] ⊆ Simple(R) the
subset of isomorphism classes which satisfy the property P . Then we have a canon-
ical, injective map S−1 : Simple(D)[S − torsion free] → Simple(D(T )) by Block
[4], lemma 2.2.1. Since Block [4], corollary 2.2.2 holds for the ring D, the above
map is also surjective by an argument similar to that of Block [4], corollary 2.2.
We conclude that S−1 : Simple(D)[S − torsion free]→ Simple(D(T )) is a bijective
map.

For any Z-graded associative k-algebra R, let us denote by gr-Simple(R) the set
of equivalence classes of simple, graded R-modules, where the equivalence relation
is given by graded isomorphisms of degree 0 and twists. Furthermore, we denote
by gr-Simple(R)[P ] ⊆ gr-Simple(R) the subset of equivalence classes that satisfy
the property P . We have already seen that if R = D, then we may replace the
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condition graded and simple with the condition gr-simple. Since D(T ) is a PI ring,
the same holds for R = D(T ).

Lemma 3.25. The natural map gr-Simple(D)→ Simple(D) is injective.

Proof. Assume that I, J ⊆ D are maximal, homogeneous left ideals in D, so that
M = D/I and N = D/J are simple, graded D-modules. Assume furthermore that
φ : M → N is an isomorphism of D-modules. Then φ is given by right multiplication
with P for some P ∈ D. Let P = P1 + · · · + Pn, where Pi is homogeneous and
non-zero for 1 ≤ i ≤ n. We know that IP ⊆ J , so IPi ⊆ J for all i, since
I, J are homogeneous ideals. This means that we have well-defined homogeneous
morphisms φi : M → N for all i, where φi is given by right multiplication with Pi.
Since M,N are simple modules, we have φi = 0 or φi is an isomorphism for all i.
Since φ = φ1 + · · · + φn is an isomorphism, it follows that there exists an index i
such that φi is an isomorphism. So φi : M → N is a graded isomorphism.

Observe that if M is a simple, graded D-module, then either M is an S-torsion
module and S−1M = 0, or M is an S-torsion free module and S−1M is a simple
D(T )-module: The last part follows from Block [4], lemma 2.1. So we have the
following commutative diagram of sets:

Simple(D)[S − torsion free] // Simple(D(T ))

gr-Simple(D)[S − torsion free]

OO

// gr-Simple(D(T ))

OO

We know that the upper horizontal map is a bijection, and that the left vertical map
is an injection. So it is clear that the lower horizontal map is injective. To see that
it is surjective, assume that N is a simple, graded D(T )-module, and let n ∈ N be a
non-zero, homogeneous element. Then there is an isomorphism of graded modules
D/J → N of degree deg(n), where J is the ideal J = {P ∈ D(T ) : Pn = 0} 6= 0. Let
I = J ∩D, then I ⊆ D is a non-zero, homogeneous left ideal. So D/I ∼= Dn ⊆ N
is a graded D-submodule of N which is Artinian. Then we may find a simple,
graded D-module M ⊆ Dn ⊆ N : Since the graded D-submodules of Dn satisfy the
ACC and DCC, we can find a gr-simple submodule M ⊆ Dn, and any gr-simple
D-module is a simple, graded D-module by proposition 3.24. So Block [4], lemma
2.2.1 shows that S−1M = N . This proves the following proposition:

Proposition 3.26. Let Γ be a numerical semigroup, let A = k[Γ] be the corre-
sponding monomial curve, and let D be the ring of differential operators on A. If
S = {x ∈ A : x 6= 0, x is homogeneous }, the map

S−1 : gr-Simple(D)[S − torsion free]→ gr-Simple(D(T ))

is a bijection.

Let P ∈ D(T ) be a non-zero, irreducible differential operator, which is homoge-
neous of weight w. Then we have P = twf(E), where tw is a unit in D(T ) and f(E)
is a polynomial in E with coefficients in k such that deg f = 1. So any maximal
homogeneous ideal I in D(T ) has the form I = D(T )P with P = E − α for some
α ∈ k.

If α = 0, then I = D(T )∂ and M = D(T )/I is a simple, graded D(T )-module.
Moreover, M is isomorphic to the left D(T )-module T , with D(T )-module structure
given by Pf(t) = P ∗ f(t) for all f(t) ∈ T . If α ∈ Z, consider the exact sequence of
left D(T )-modules

0→ D(T )(E − α)→ D(T )→ T → 0,
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where the morphism D(T ) → T is given by P 7→ Ptα = P ∗ tα for all differential
operators P ∈ D(T ). Since this morphism is homogeneous of degree α, we see that
the simple, graded left D(T )-module D(T )/D(T )(E − α) is isomorphic to T [α] as
a graded D(T )-module.

Let Nα be the simple, graded D(T )-module Nα = D(T )/D(T )(E − α) for
all α ∈ k. The remarks above show that any simple, graded D(T )-module in
gr-Simple(D(T )) is equivalent to Nα for some α ∈ k. Furthermore, we have shown
Nα is equivalent with N0 for all α ∈ Z. More generally, we have:

Lemma 3.27. Let α, β ∈ k. The simple, graded D(T )-modules Nα, Nβ are equiva-
lent in gr-Simple(D(T )) if and only if α− β ∈ Z.

Proof. If α− β = n ∈ Z, then right multiplication by tn induces an isomorphism
of graded modules Nα → Nβ of degree n. Assume that n = α − β 6∈ Z, and
denote by D = A1(k) the first Weyl algebra and by Mγ the graded D-module
Mγ = D/D(E − γ) for all γ ∈ k \ Z. If α, β 6∈ Z, it follows from Dixmier [11],
lemma 24 that Mα,Mβ are non-isomorphic simple modules. If α ∈ Z or β ∈ Z,
we may assume that α 6∈ Z and β = 0 by symmetry and the remark preceding
the lemma. In this case, Mα and M0 = A = k[t] are non-isomorphic by Dixmier
[12], proposition 4.4, and they are simple modules by corollary 2.9 and Dixmier
[11], lemma 24. So in all cases, Mα and Mβ define different equivalence classes in
gr-Simple(D)[S − torsion free]. By proposition 3.26, we see that Nα and Nβ are
not equivalent in gr-Simple(D(T )).

Let I = I(k) ⊆ k be a fixed subset of k containing 0, such that the natural
map I → k/Z is a bijection of sets. If k = C is the complex numbers, we can
for instance choose I = {x + iy ∈ C : 0 ≤ x < 1}. In this notation, we have the
following result:

Corollary 3.28. There is a bijective correspondence between the set {Nα : α ∈ I}
and the set gr-Simple(D(T )) of equivalence classes of simple, graded D(T )-modules.



CHAPTER 4

Modules with integrable connections

Let A be a commutative k-algebra of finite type, and let M be an A-module.
If A is a regular ring, the notions of connections on M and of covariant derivatives
on M coincide. We extend both these notions to the general case, where they are
different in an essential way. We develop the obstruction theory for connections
and for covariant derivatives on M , which is due to Laudal in the general case.
Moreover, we present an application to torsion free, graded modules of rank 1 over
monomial curves.

In contrast, we mention a result obtained by Henrik Vosegaard and the author,
given in theorem 4.17. It shows that existence of D-module structures on M com-
patible with the A-module structure is a much stronger condition than existence of
integrable covariant derivatives on M .

1. Basic definitions

Let A be a commutative k-algebra. We define the module of Kähler differentials
Ω1(A/k) on A/k to be the kernel of the natural A-linear map P1(A/k)→ P0(A/k).
Clearly, Ω1(A/k) inherits an A-module structure from P1(A/k): This is the A-
module structure induced by j2 : A → A ⊗k A, see section 1.2. Moreover, there
is a derivation d : A → Ω1(A/k), induced by the map j1 − j2 : A → A ⊗k A.
This is called the universal derivation of A/k. It is easy to see that any element
w ∈ Ω1(A/k) has the form w =

∑
aid(bi), with ai, bi ∈ A for all i. This implies that

the functor Derk(A,−) : ModA → ModA is represented by the couple (Ω1(A/k), d),
in the sense that the derivation d induces an isomorphism of functors between
HomA(Ω1(A/k),−) and Derk(A,−).

Let Ωn(A/k) = ∧nAΩ1(A/k) for all n ≥ 0. This is an A-module for all n, and
Ω0(A/k) = A. There is a k-linear map dn : Ωn(A/k) → Ωn+1(A/k) for all n ≥ 0,
such that d0 = d: Let w ∈ Ωn(A/k), then w has the form w =

∑
ai(dγi1∧· · ·∧dγin)

with ai, γij ∈ A for all integers i, j, and we define dn(w) =
∑
dai∧dγi1∧· · ·∧dγin.

We see that the resulting sequence of k-linear maps

A→ Ω1(A/k)→ · · · → Ωn(A/k)→ . . .

is a complex of k-vector spaces, called the algebraic de Rham complex of A/k.
Let M be any A-module. We define a connection on M to be a k-linear map

∇ : M → Ω1(A/k)⊗AM which has the property that

∇(am) = a∇(m) + d(a)⊗m
for all a ∈ A, m ∈ M . This property is called the derivation property of the
connection ∇.

Assume that ∇ is a connection on M . Then ∇ induces a sequence of k-linear
maps

M → Ω1(A/k)⊗AM → Ω2(A/k)⊗AM → · · · → Ωn(A/k)⊗AM → . . .

where the map ∇n : Ωn(A/k) ⊗AM → Ωn+1(A/k) ⊗AM is given by the formula
∇n(w ⊗m) = dn(w)⊗m+ (−1)nw ∧∇(m) for all w ∈ Ωn(A/k), m ∈M . We see
that ∇0 = ∇. Let us denote by R∇ : M → Ω2(A/k)⊗AM the composition ∇1 ◦∇.

46
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This is a A-linear map, and it is called the curvature of the connection ∇. We see
that the sequence of k-linear maps is a complex of k-vector spaces if and only if
R∇ = 0. We say that the connection ∇ is integrable if R∇ = 0, and we refer to the
above complex as the de Rham complex of the integrable connection ∇ on M in
this case. It is also usual to call a connection ∇ flat or regular if R∇ = 0.

Let A be a commutative k-algebra, and let g be a Lie algebra over k. We say
that (A,g) is a Lie-Cartan pair over k if there is an action of A on g and an action
of g on A with the following properties:

i) The action of A on g makes g an A-module.
ii) The action of g on A induces a homomorphism ρ : g → Derk(A) of k-Lie

algebras and of A-modules.
iii) We have [g, ah] = a[g, h] + ρg(a)h for all g, h ∈ g, a ∈ A.
We shall often write g for the Lie-Cartan pair (A,g) when the k-algebra A is
understood from the context.

The first example of a Lie-Cartan pair (A,g) is given by g = Derk(A) for
any commutative k-algebra A. In this case, the A-module structure on g and the
homomorphism g → Derk(A) are the natural ones. For another example, consider
any k-linear subspace g ⊆ Derk(A), such that g is an A-submodule and a k-Lie
subalgebra of Derk(A). In fact, every Lie-Cartan pair (A,g) over k such that
ρ : g → Derk(A) is injective is isomorphic to a Lie-Cartan pair of this type. We
shall identify g with its image in Derk(A) when ρ is injective.

Let (A,g) be a Lie-Cartan pair over k, and let M be an A-module. A g-
connection on M is an A-linear homomorphism ∇ : g → Endk(M) which has the
property

∇g(am) = a∇g(m) + ρg(a)m

for all a ∈ A, m ∈M, g ∈ g. This property is called the derivation property of the
g-connection ∇. If g = Derk(A), we call the g-connection ∇ a covariant derivative
on M .

Let ∇ be a g-connection on M . Then there exists an A-linear homomorphism
R∇ : g ∧A g → EndA(M), given by R∇(g ∧ h) = ∇[g,h] − [∇g,∇h] for all g, h ∈ g.
This homomorphism is called the curvature of the g-connection ∇, and we see that
R∇ = 0 if and only if ∇ is a homomorphism of Lie algebras. We say that ∇ is an
integrable g-connection if R∇ = 0.

2. Categories of modules with connection

Let A be a commutative k-algebra. We define the category of modules with inte-
grable connection MC(A) in the following way: An object in the category MC(A)
is a couple (M,∇), where M is an A-module and ∇ is an integrable connection
on M . Given a pair of objects (M,∇), (M ′,∇′) in the category MC(A), we de-
fine a morphism from (M,∇) to (M ′,∇′) to be a homomorphism φ : M → M ′ of
A-modules, such that the following diagram commutes:

M
∇ //

φ

��

Ω1(A/k)⊗AM

id⊗φ
��

M ′
∇′
// Ω1(A/k)⊗AM ′

Let (A,g) be a Lie-Cartan pair over k. We define the category of modules with
integrable g-connection MC(A; g) in the following way: An object in MC(A; g)
is a couple (M,∇), where M is an A-module and ∇ is an integrable g-connection
on M . Given a pair of objects (M,∇), (M ′,∇′) in the category MC(A; g), we
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define a morphism from (M,∇) to (M ′,∇′) to be a homomorphism φ : M → M ′

of A-modules, such that the following diagram commuates for all elements g ∈ g:

M
∇g //

φ

��

M

φ

��
M ′

∇′g
// M ′

Let (M,∇) be an object in the category MC(A), so ∇ : M → Ω1(A/k)⊗AM
is an integrable connection on M . Let us consider the Lie-Cartan pair (A; g) with
g = Derk(A) and ρ : g → Derk(A) the identity map. For each element g ∈ g,
ρg ∈ Derk(A) corresponds to an A-linear homomorphism φg : Ω1(A/k) → A by
the universal property of the Kähler differentials. Let us denote by ∇′g : M → M
the k-linear map given by (φg ⊗ id) ◦ ∇. This clearly defines an A-linear map
∇′ : g → Endk(M), and since the connection ∇ has the derivation property, ∇′ is
a g-connection on M .

Lemma 4.1. There is a natural covariant functor F : MC(A)→MC(A; Derk(A)).

Proof. The assignment (M,∇) 7→ (M,∇′), where ∇ is a connection on M and
∇′ the corresponding covariant derivative on M , is functorial: This can easily be
verified by considering the diagrams above. So the construction above induces a
covariant functor. We have to prove that if the connection ∇ is integrable, then
the covariant derivative ∇′ is integrable as well: Let g, h ∈ Derk(A) be derivations,
and let us denote by D(g ∧ h) : Ω2(A/k) → A the A-linear map defined by the
formula D(g∧h)(da∧db) = g(a)h(b)−h(a)g(b) for all a, b ∈ A. A straight-forward
calculation shows that R∇′(g ∧ h) is the composition (D(g ∧ h) ⊗ id) ◦ R∇. But
R∇ = 0 since ∇ is integrable, so R∇′ = 0 and ∇′ is integrable as well.

Let (A,g) be a Lie-Cartan pair over k, and let V be the k-vector space given
by V = A⊕g. Consider the tensor algebra T (V ) of V over k, defined as

T (V ) = ⊕
i≥0

V i

with free multiplicative structure. This is an associative k-algebra, and we let J be
the ideal generated by all relations of the form

i) a ∗ b− ab,
ii) a ∗ g − ag,
iii) g ∗ a− ag − ρg(a),
iv) g ∗ h− h ∗ g − [g, h],
for all elements a, b ∈ A, g, h ∈ g, where ∗ denotes the free multiplication in the
tensor algebra T (V ). We denote by R(A; g) the quotient R(A; g) = T (V )/J , which
is clearly an associative k-algebra.

Proposition 4.2. Let (A,g) be a Lie-Cartan pair over k. Then there is an equiva-
lence of categories between MC(A; g) and the category R(A; g)-Mod of left R(A; g)-
modules. In particular, the category MC(A; g) is Abelian.

Proof. This follows directly from the construction of R(A; g).

Consider the homomorphism ρ : g → Derk(A) associated with the Lie-Cartan
pair (A,g). It induces a k-linear map V → D1(A), and consequently a k-algebra
homomorphism T (V ) → D(A). We observe that the the ideal J maps to 0, and
that the image of this map is contained in the derivation ring ∆(A) ⊆ D(A). So
we obtain a k-algebra homomorphism ρ : R(A; g) → ∆(A). We also see that if
ρ : g → Derk(A) is injective, then the ring homomorphism ρ : R(A; g) → ∆(A) is
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injective. In this case, we identify R(A; g) with its image in ∆(A), and we write
∆(g) for this image.

Corollary 4.3. Let (A,g) be a Lie-Cartan pair over k such that ρ : g → Derk(A)
is injective. Then the category MC(A; g) is equivalent to the category of left ∆(g)-
modules. In particular, the category MC(A; Derk(A)) is equivalent to the category
of left ∆(A)-modules, where ∆(A) is the derivation ring of A.

3. Localizations

Let A be a commutative k-algebra, let S be a multiplicatively closed subset
of A, and let M,N be A-modules. Then we have canonical homomorphism of
S−1A-modules

S−1(M ⊗A N)→ S−1M ⊗S−1A S
−1N,

S−1(HomA(M,N))→ HomS−1A(S−1M,S−1N).

The first is an isomorphism, and the second is an isomorphism if M is of finite
presentation, see Bourbaki [5], proposition 2.2.7.18 and 2.2.7.19. Furthermore, we
have a canonical homomorphism of S−1A-modules S−1Ω1(A/k) → Ω1(S−1A/k),
and this is an isomorphism by Matsumura [24], proposition 9.25.

Let D ∈ Derk(A). Then there is a unique derivation D′ ∈ Derk(S−1A) such
that D′(a/1) = D(a)/1 for all a ∈ A: This derivation is given by the formula

D′(a/s) = (D(a)s− aD(s))/s2

for all a ∈ A, s ∈ S. The uniqueness of D′ follows since D′(s/1 · 1/s) = 0
for all elements s ∈ S. We observe that if d : Ω1(A/k) → A is the universal
derivation of A/k, then d′ : Ω1(S−1A/k) → S−1A is the universal derivation of
S−1A/k. Clearly, the construction above defines a canonical homomorphism of
S−1A-modules S−1 Derk(A) → Derk(S−1A). From the results in the previous
paragraph, we see that this is an isomorphism if Ω1(A/k) is an A-module of finite
presentation. In particular, it is an isomorphism if A is a k-algebra of finite type.

Let ∇ : M → Ω1(A/k)⊗AM be a connection on M . We define a k-linear map
S−1∇ : S−1M → S−1(Ω1(A/k)⊗AM) by the formula

S−1∇(m/s) = 1/s2(s∇(m)− d(s)⊗m)

for all elements s ∈ S, m ∈ M . Let us show that this is a well-defined map. So
assume that um = 0 for some u ∈ S. Then u2 ∈ S, and we have

u2(t∇(m)− d(t)⊗m) = ut∇(um)− td(u)⊗ um− ud(t)⊗ um = 0.

Since S−1(Ω1(A/k)⊗AM) ∼= Ω1(S−1A/k)⊗S−1A S
−1M , we obtain a commutative

diagram of k-vector spaces:

M

S−1

��

∇ // Ω1(A/k)⊗AM

S−1

��
S−1M

S−1∇
// Ω1(S−1A/k)⊗S−1A S

−1M

It is straight-forward to see that S−1∇ has the derivation property, since ∇ is a
connection. In fact, S−1∇ is the uniquely defined connection on S−1M such that
the above diagram commutes.

Proposition 4.4. Let A be a commutative k-algebra, and let S ⊆ A be any multi-
plicatively closed subset. Then there exists a natural, covariant localization functor
S−1 : MC(A)→MC(S−1A).
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Proof. Clearly, the construction of (S−1M,S−1∇) from (M,∇) given above is
functorial. So it is enough to show that S−1∇ is integrable if ∇ is integrable. But
a calculation shows that

RS−1∇(m/s) = 1/s R∇(m)

for all elements s ∈ S, m ∈M . So if R∇ = 0, then RS−1∇ = 0 as well.

Let S−1 : Derk(A) → Derk(S−1A) denote the composition of the A-linear
localization map Derk(A) → S−1 Derk(A) with the canonical S−1A-linear homo-
morphism S−1 Derk(A) → Derk(S−1A) defined above. For any Lie-Cartan pair
(A,g) over k, let us denote by S−1ρ : S−1g→ Derk(S−1A) the composition of the
S−1A-linear map S−1ρ : S−1g→ S−1 Derk(A) with the canonical S−1A-linear ho-
momorphism S−1 Derk(A) → Derk(S−1A). We obtain the following commutative
diagram of A-modules:

g

S−1

��

ρ // Derk(A)

S−1

��
S−1g //

S−1ρ &&LLLLLLLLLL
S−1 Derk(A)

��
Derk(S−1A)

The S−1A-module S−1g has a natural Lie algebra structure over k, defined by the
equation

[g/s, h/t] = [g, h]/st− ρg(t)h/st2 + ρh(s)g/s2t

for all g, h ∈ g, s, t ∈ S. A straight-forward calculation shows that the S−1A-linear
map S−1ρ : S−1g→ Derk(S−1A) is a Lie algebra homomorphism over k.

Lemma 4.5. Let (A,g) be a Lie-Cartan pair over k, and let S ⊆ A be a multi-
plicatively closed subset. Then (S−1A,S−1g) is a Lie-Cartan pair over k as well.
Assume that Ω1(A/k) is an A-module of finite presentation. Then the structural
homomorphism S−1ρ : S−1g → Derk(S−1A) is injective if ρ : g → Derk(A) is
injective.

Proof. The first part is clear from the construction above. For the last part,
it is clear that if ρ is injective, then S−1g → S−1 Derk(A) is injective as well.
But if Ω1(A/k) is of finite presentation, then S−1 Derk(A) → Derk(S−1A) is an
isomorphism, so the result follows.

Let M be an A-module, and let ∇ : g → Endk(M) be a g-connection on M .
Then, we define the S−1A-linear map S−1∇ : S−1g→ Endk(S−1M) by the formula

S−1∇g/s(m/t) = 1/st2 (t∇g(m)− ρg(t)m)

for all g ∈ g, s, t ∈ S, m ∈M . Clearly, S−1∇ is a S−1g-connection on S−1M , and
the following diagram commutes for all g ∈ g:

M

S−1

��

∇g // M

S−1

��
S−1M

S−1∇g/1

// S−1M

Furthermore, S−1∇ is the unique S−1g-connection on S−1M such that the above
diagram commutes for all g ∈ g.
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Proposition 4.6. Let (A,g) be a Lie-Cartan pair over k, and let S ⊆ A be a
multiplicatively closed subset. Then there exists a natural, covariant localization
functor S−1 : MC(A; g)→MC(S−1A;S−1g).

Proof. The construction of (S−1M,S−1∇) from (M,∇) is clearly functorial, so
it is enough to show that S−1∇ is integrable if ∇ is integrable. But a direct
computation shows that

RS−1∇(g/s ∧ h/t)(m/u) = 1/stu R∇(g ∧ h)(m)

for all g, h ∈ g, s, t, u ∈ S, m ∈ M . So if R∇ = 0, then RS−1∇ = 0 as well, which
is what we wanted to prove.

Let A be any commutative Noetherian k-algebra. Then A is regular if Am is a
regular local ring for all maximal ideals m ⊆ A. We know that Ω1(A/k) is a locally
free A-module if A is a regular k-algebra. This implies the following result:

Proposition 4.7. Let A be a regular, commutative k-algebra of finite type. Then,
the functor F : MC(A)→MC(A; Derk(A)) is an equivalence of categories.

Proof. We construct an inverse to the functor F . Let ∇′ : Derk(A) → Endk(M)
be a covariant derivative on M . For all m ∈M , we define φm ∈ HomA(Derk(A),M)
to be given by φm(D) = ∇′D(m). We clearly have Derk(A) ∼= HomA(Ω1(A/k), A),
so there is a natural A-linear map

Ω1(A/k)⊗AM → HomA(Derk(A),M),

given by w ⊗ m 7→ {D 7→ D(w)m} for all w ∈ Ω1(A/k), m ∈ M . But since
A is a regular, commutative k-algebra of finite type, the localization of this map
has the form S−1Ω1(A/k)⊗S−1A S

−1M → HomS−1A(Derk(S−1A), S−1M) for any
multiplicatively closed subset S. Furthermore, we see that if S = A \ p for some
prime ideal p ⊆ A, this map is an isomorphism: This is clear, since Ω1(A/k) and
Derk(A) are locally free A-modules with the same rank. So Ω1(A/k) ⊗A M and
HomA(Derk(A),M) are naturally isomorphic A-modules. We define the k-linear
map ∇ : M → Ω1(A/k) ⊗A M by the formula ∇(m) = φm for all m ∈ M . Then
clearly, ∇ is a connection on M which the functor F maps to ∇′. Furthermore, we
see that if ∇′ is integrable, then ∇ is an integrable connection.

4. Obstruction theory

Let A be a commutative k-algebra, and let M be an A-module. In this section,
we shall describe the obstruction theory for connections on M , covariant derivatives
on M , and more generally g-connections on M for Lie-Cartan pairs (A,g) over
k with g ⊆ Derk(A). We shall describe this obstruction theory via Hochschild
cohomology, and we refer to appendix A for definitions and elementary results on
Hochschild cohomology.

We denote by ψ ∈ Derk(A,Homk(M,Ω1(A/k)⊗AM)) the derivation given by
ψ(a)(m) = −da⊗m for all a ∈ A, m ∈ M . From the definition of the Hochschild
complex, this is a cocycle in HC1(A,Homk(M,Ω1(A/k) ⊗A M)), and it defines a
canonical class c(M) ∈ Ext1

A(M,Ω1(A/k)⊗AM) via Hochschild cohomology. The
class c(M) is called the Atiyah-Kodaira-Spencer class of M .

Proposition 4.8. Let A be a commutative k-algebra and let M be an A-module.
Then there is a canonical obstruction c(M) ∈ Ext1

A(M,Ω1(A/k) ⊗A M) such that
c(M) = 0 if and only if there exists a connection on M . Furthermore, the set of all
connections on M is a torsor over HomA(M,Ω1(A/k)⊗AM) if c(M) = 0.
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Proof. We have constructed c(M) above. First, observe that c(M) = 0 if and only
if there exists a connection on M : From the construction of c(M), we have that
c(M) = 0 if and only if ψ = d0(∇) for some∇ ∈ Homk(M,Ω1(A/k)⊗AM). But∇ is
a connection on M if and only if ∇(am) = a∇(m)+da⊗m for all a ∈ A, m ∈M , or
equivalently if d0(∇) = ψ. Secondly, assume that c(M) = 0. Then we may choose a
connection∇ : M → Ω1(A/k)⊗AM on M . For any∇′ ∈ Homk(M,Ω1(A/k)⊗AM),
∇′ is a connection on M if and only if ∇′−∇ ∈ HomA(M,Ω1(A/k)⊗AM), so this
proves the second part of the proposition.

For any D ∈ Derk(A), let ψD ∈ Derk(A,Endk(M)) be the derivation given by
ψD(a)(m) = −D(a)m for all a ∈ A, m ∈ M . We see that the derivation ψD maps
to a uniquely defined element in Ext1

A(M,M) via Hochschild cohomology, so we
obtain a natural homomorphism

g : Derk(A)→ Ext1
A(M,M)

of k-vector spaces. We call this map the Kodaira-Spencer map of M , and we denote
by V = V(M) ⊆ Derk(A) its kernel, the Kodaira-Spencer kernel of M .

Lemma 4.9. Let A be a commutative k-algebra, and let M be an A-module. Then
(A,V) is a Lie-Cartan pair over k.

Proof. From the definition, it is clear that g is an A-linear homomorphism, so
V ⊆ Derk(A) is clearly an A-submodule. It is therefore enough to show that it is a
k-Lie subalgebra: For any derivation D ∈ Derk(A), we see that D ∈ V if and only
if ψD = d0(φ) for some φ ∈ Endk(M), where d0 : Endk(M) → Derk(A,Endk(M))
denotes the differential in the Hochschild complex. So if D,D′ ∈ V, then there
exist φ, φ′ ∈ Endk(M) with d0(φ) = ψD, d

0(φ′) = ψD′ . An easy calculation shows
that d0([φ, φ′]) = ψ[D,D′] with [φ, φ′] ∈ Endk(M), so [D,D′] ∈ V.

Proposition 4.10. Let A be a commutative k-algebra, and let M be an A-module.
Then there is a k-linear homomorphism ∇ : V → Endk(M) with the derivation
property ∇D(am) = a∇D(m) +D(a)m for all a ∈ A, m ∈ M, D ∈ Derk(A). Fur-
thermore, V is the unique maximal k-linear subspace of Derk(A) with this property.

Proof. Let D ∈ Derk(A). Then there exists an endomorphism ∇D ∈ Endk(M)
with ∇D(am) = a∇D(m)+D(a)m for all a ∈ A, m ∈M if and only if ψD = d0(∇)
for some ∇ ∈ Endk(M). But the last condition is equivalent with the condition
that D ∈ V, and the result follows.

Let ∇ : V→ Endk(M) be a k-linear map with derivation property in the above
sense. We define l(∇) to be the k-linear map l(∇) ∈ Homk(A,Homk(V,Endk(M)))
given by

l(∇)(a)(D) = ∇aD − a∇D
for all a ∈ A, D ∈ V. An easy calculation shows that ∇aD − a∇D ∈ EndA(M) for
all a ∈ A, D ∈ V, and that l(∇) ∈ Homk(A,Homk(V,EndA(M))) is a derivation.
So l(∇) maps to a class lc(M) ∈ Ext1

A(V,EndA(M)), and this class is canonical in
the sense that it does not depend upon the choice of k-linear map ∇.

Proposition 4.11. Let A be a commutative k-algebra, and let M be an A-module.
Then there exists a canonical obstruction lc(M) ∈ Ext1

A(V,EndA(M)) such that
lc(M) = 0 if and only if there exists a V-connection on M . Furthermore, the set
of V-connections on M is a torsor over HomA(V,EndA(M)) if lc(M) = 0.

Proof. We have constructed the obstruction lc(M) above. First, let us show that
lc(M) = 0 if and only if there is a V-connection on M : Let ∇ : V → Endk(M)
be a k-linear map with derivation property. If ∇ is A-linear, then l(∇) = 0,
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so clearly lc(M) = 0. Let us assume that lc(M) = 0. Then there exists a k-
linear map φ : V → EndA(M) such that d0(φ) = l(∇). Let ∇′ = ∇ + φ, then
∇′ : V→ Endk(M) is A-linear and it has the derivation property by construction,
so ∇′ is a V-connection on M . Secondly, let lc(M) = 0. Then we may choose a
V-connection ∇ : V→ Endk(M) on M . For any A-linear map ∇′ : V→ Endk(M),
we see that ∇′ is a V-connection on M if and only if ∇′−∇ ∈ HomA(V,EndA(M)),
so the result follows.

5. Connections on graded modules over monomial curves

Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding monomial
curve, and let M be a Z-graded A-module of finite type. Consider the multiplica-
tively closed subset S ⊆ A consisting of all non-zero, homogeneous elements in A.
Then we have seen that S−1A = T = k[t, t−1]. We observe that any homogeneous
element in T is a unit. Clearly, S−1M = T ⊗AM is a Z-graded T -module of finite
type. From the above comment, it follows that any minimal, homogeneous set of
generators for S−1M is basis for S−1M . So there is an isomorphism of Z-graded
T -modules S−1M ∼= Tn, where n = rkM = dimK(K ⊗AM) and K is the field of
fractions of A. In particular, S−1M = 0 if and only if M is a torsion module.

Assume that M is a torsion free A-module. Then, the natural map of Z-graded
A-modules M → S−1M is injective. Furthermore, S−1M ∼= Tn for n = rkM > 0.
In this case, we shall identify M with its image in Tn, and consider M a Z-graded
A-submodule of Tn.

The case n = 1 is particularly simple, and we shall consider this case in more
detail: Assume that M is a torsion free, Z-graded A-module of rank 1. Then, we
may consider M as a Z-graded A-submodule of T by the above comment. Let
m1, . . . ,ms be a minimal system of homogeneous generators for M considered as
an A-module. Then we may choose mi = tdi with di ∈ Z for 1 ≤ i ≤ s. Consider
the set Λ = {λ ∈ Z : tλ ∈M}, and let k[Λ] be the k-linear subspace in T generated
by {tλ : λ ∈ Λ}. Then we have M = k[Λ].

Proposition 4.12. Let Γ be a numerical semigroup, and let A = k[Γ] be the cor-
responding monomial curve. For each set Λ ⊆ Z such that Γ + Λ ⊆ Λ, the k-linear
subspace k[Λ] ⊆ T is a torsion free, Z-graded A-module of rank 1. In particu-
lar, the assignment Λ 7→ k[Λ] induces a bijective correspondence between the set
{Λ : Γ ⊆ Λ ⊆ N0, Γ + Λ ⊆ Λ} and the set of equivalence classes of torsion free,
Z-graded A-modules of rank 1, up to graded isomorphisms of degree 0 and twists.

Proof. The first part is clear from the construction above. For the second part,
let us show that the correspondence Λ 7→ k[Λ] is surjective: Assume that M is a
torsion free, Z-graded A-module of rank 1. Then M = k[Λ] for some set Λ ⊆ Z
such that Γ+Λ ⊆ Λ. Let d = min Λ. Since M is of finite type, this is a well-defined
integer, so we may define Λ′ = Λ − d. Clearly, Γ + Λ′ ⊆ Λ′ and Γ ⊆ Λ′ ⊆ N0.
But we have M [d] = k[Λ′], and the surjectivity follows. The injectivity is clear: If
Γ ⊆ Λ,Λ′ ⊆ N0 and k[Λ], k[Λ′] are equivalent, then there must be a homogeneous
isomorphism of degree 0 between these graded A-modules. Hence Λ = Λ′.

Let (A,g) be a Lie-Cartan pair over k, and let M be an A-module. For any
g-connection ∇ : g→ Endk(M), we know that ∇g ∈ Endk(M) is an endomorphism
which satisfies [∇g, a] = ρg(a) for all a ∈ A, g ∈ g. Since ρg(a) ∈ EndA(M) for all
a ∈ A, we know that ∇g ∈ D1

A(M) for all g ∈ g.
Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding monomial

curve, and let M be a torsion free, Z-graded A-module of rank 1. Consider the
multiplicatively closed subset S ⊆ A consisting of the non-zero homogeneous el-
ements in A. The localization DA(M) → S−1 DA(M) is injective, and we know
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that S−1 DA(M) ∼= DS−1A(S−1M) = D(T ) by Smith and Stafford [32], section 1.3
(d). Assume that ∇ : g → Endk(M) is a g-connection on M , and let g ∈ g. Then
∇g ∈ DA(M) satisfies [∇g, a] = ρg(a) for all a ∈ A. We identify DA(M) with its
image in D(T ). Then ∇g = ρg + fg for some fg ∈ T such that (ρg + fg) ∗M ⊆M .
In particular, if g ⊆ Derk(A), then ∇D = D + fD for some fD ∈ T such that
(D + fD) ∗M ⊆M for all derivations D ∈ g. Moreover, fg = ∇g(1) if 1 ∈M .

Corollary 4.13. Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding
monomial curve, and let M be a torsion free, Z-graded A-module of rank 1. Then
any covariant derivative on M is integrable.

Proof. We may assume that M = k[Λ], where Γ ⊆ Λ ⊆ N0 and Γ + Λ ⊆ Λ. Let
∇ : Derk(A)→ Endk(M) be a covariant derivative, and let f = ∇E(1) ∈ EndA(M).
We recall that Derk(A) is generated as left A-module by tnE for n ∈ Γ(1). It is
therefore enough to show that R∇(tmE ∧ tnE) = 0 for m,n ∈ Γ(1) ∪ {0}. But
∇tmE = tm∇E in D(T ) for all m ∈ N0: Let c be the conductor of Γ, then we
see that tc∇tmE = tctm∇E in D(T ), and ∇tmE = tm∇E since D(T ) is an integral
domain. A direct computation shows that R∇(tmE ∧ tnE) = 0.

We denote by HomA(Derk(A),EndA(M)) the potentials of M . Their impor-
tance derives from the fact that if ∇ is a covariant derivative on M , then the set of
covariant derivatives on M is given by {∇ + P : P ∈ HomA(Derk(A),EndA(M)).
Notice that if A = k[Γ] is a monomial curve, and M is a torsion free, Z-graded A-
module of rank 1, we have a natural map HomA(Derk(A),EndA(M))→ EndA(M)
given by P 7→ P (E):

Proposition 4.14. Let Γ be a numerical semigroup, let A = k[Γ] be the corre-
sponding monomial curve, and let M be a torsion free, Z-graded A-module of rank
1. Then the map HomA(Derk(A),EndA(M)) → EndA(M) given by P 7→ P (E) is
injective, and its image is the set of all endomorphisms f ∈ EndA(M) such that
tnf ∈ EndA(M) for all n ∈ Γ(1).

Proof. It is easy to see that the map is injective: Let P, P ′ be potentials of M .
Since M is torsion free, and P (E) = P ′(E) implies tcP (tnE) = tcP ′(tnE) for all
n ∈ Γ(1), where c is the conductor of Γ, the map is injective. It is also clear that if P
is a potential, then f = P (E) satisfies tnf ∈ EndA(M) for all n ∈ Γ(1). Conversely,
assume that f ∈ EndA(M) is such that tnf ∈ EndA(M) for all n ∈ Γ(1). Then
P (tnE) = tnf defines a potential, so the result follows.

Notice that the map HomA(Derk(A),EndA(M)) → EndA(M) is a graded ho-
momorphism of degree 0, so its image is a graded submodule of EndA(M). Let
f0 ∈ EndA(M) be a homogeneous element of degree 0. Then f0 is in the image of
the map above if and only if f0 = 0 or tn ∈ EndA(M) for all n ∈ Γ(1). We denote
by F ⊆ EndA(M) the image of the above map, and by F0 the homogeneous part
of F of degree 0.

We define Λ(0) = {w ∈ Z : w+Λ ⊆ Λ}. Then it is easy to see that Λ(0) ⊆ N0 is
a numerical semigroup which satisfies Γ ⊆ Λ(0) ⊆ Λ, and EndA(M) is the monomial
curve EndA(M) = k[Λ(0)]. With this notation, we see that F0 = k if Γ(1) ⊆ Λ(0),
and F0 = 0 otherwise. In particular, if Γ is a symmetric numerical semigroup, then
F0 = k if Λ 6= Γ, and F0 = 0 if Λ = Γ: To see this, we recall that Γ(1) = {g} when
Γ is symmetric. If Λ = Γ, then clearly g 6∈ Λ(0) since g + 0 = g 6∈ Λ. If Λ 6= Γ, then
there exists some h ∈ Λ \ Γ. Since Γ is symmetric and h 6∈ Γ, then g − h ∈ Γ, and
consequently g = (g − h) + h ∈ Λ.

Proposition 4.15. Let Γ be a numerical semigroup, let A = k[Γ] be the correspond-
ing monomial curve, and let M = k[Λ] for Γ ⊆ Λ ⊆ N0 with Γ+Λ ⊆ Λ. Then there
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is an injective map from the set of covariant derivatives on M to EndA(M), given
by ∇ 7→ ∇E(1). Furthermore, the image of this map is the set of endomorphisms
f ∈ EndA(M) such that tn(E + f) ∗M ⊆M for all n ∈ Γ(1).

Proof. Let ∇ : Derk(A) → Endk(M) be a covariant derivative on M , and let
f = ∇E(1) ∈ M . Then ∇E = E + f , considered as an element in D(T ) by the
comments above. Clearly, E ∗ tn = ntn for all n ∈ Z, so E ∗M ⊆M . It follows that
f ∗M ⊆M , so f ∈ EndA(M). We see that ∇ 7→ ∇E(1) induces a well-defined map
with image in EndA(M) ⊆ T . We will show that this map is injective: Assume
that ∇,∇′ are covariant derivatives on M , with ∇E(1) = ∇′E(1) = f . We recall
the following definition from section 2.5:

Γ(1) = {w ∈ Z : τ(w) = 1} = {w ∈ H : n+ w ∈ Γ for all non-zero n ∈ Γ}

Since Derk(A) is generated as left A-module by tnE for n ∈ Γ(1), it is enough to
prove that ∇tnE = ∇′tnE . We have ∇E ,∇′E = E + f considered as elements in
D(T ), so ∇E = ∇′E . We obtain tc∇tnE = ∇tn+cE = tn+c∇E = tn+c∇′E = tc∇′tnE
because c, n + c ∈ Γ, where c is the conductor of Γ. But M is torsion free, so this
means that ∇tnE = ∇′tnE . For the last part, the condition tn(E + f) ∗M ⊆M for
all n ∈ Γ(1) is necessary, since ∇tnE = tn(E+f). But assume that f ∈ EndA(M) is
such that tn(E+ f) ∗M ⊆M for all n ∈ Γ(1). Then the formula ∇tnE = tn(E+ f)
defines a covariant derivative ∇ : Derk(A) → Endk(M) with ∇E(1) = f , since
DA(M) = {P ∈ D(T ) : P ∗M ⊆M}.

Let ∇ : Derk(A) → Endk(M) be a covariant derivative on M = k[Λ], and
let f ∈ EndA(M) be given by ∇E(1) = f . Then f has a unique decomposition
f = f0 + (f − f0), where f0 is homogeneous of degree 0, and f0, f − f0 ∈ EndA(M).
Furthermore, ∇E = (E + f0) + (f − f0). We have that ∇tnE(M) ⊆ M for all
n ∈ Γ(1), so tn(E + f0) ∗M ⊆ M and tn(f − f0) ∗M ⊆ M . This implies that
f − f0 ∈ F , and P ∈ HomA(Derk(A),EndA(M)) defined by P (E) = f − f0 is
a potential. We conclude that ∇′ = ∇ − P is another covariant derivative, and
∇′E = E + f0.

Theorem 4.16. Let Γ be a numerical semigroup, and let A = k[Γ] be the corre-
sponding monomial curve. If Γ is symmetric, then there exists an integrable covari-
ant derivative ∇ : Derk(A) → Endk(M) for all torsion free, Z-graded A-modules
M of rank 1.

Proof. We may assume that M = k[Λ] for Γ ⊆ Λ ⊆ N0 with Γ + Λ ⊆ Λ. Then
clearly ∇E = E defines a covariant derivative on M : It is enough to see that
E ∗M ⊆M and that tgE ∗M ⊆M . We have seen that any covariant derivative is
integrable, so this concludes the proof.

Notice that ∇E = E + f0 defines an integrable, covariant derivative on M for
all f0 ∈ k if Λ 6= Γ, while ∇E = E defines the only integrable covariant derivative
on M of this form if Λ = Γ.

Let Γ =< 3, 4, 5 > and let Λ = Γ ∪ (Γ + 1). Then M = k[Λ] is a torsion-
free, Z-graded module of rank 1 over the monomial curve A = k[Γ]. But there
are no covariant derivatives on M : If there were, there would exist an f0 ∈ k
such that ∇E = E + f0 defined a covariant derivative. But Γ(1) = {1, 2}, and
t(E + f0) ∗ t = (1 + f0)t2 ∈ M , t2(E + f0) ∗ 1 = f0t

2 ∈ M , so 1 + f0 = f0 = 0.
This is impossible, so the condition that Γ is symmetric is necessary in the above
theorem.

We remark that a torsion-free, Z-graded module M of rank 1 over A = k[Γ]
is projective if and only if it is free. So M is projective if and only if Λ = Γ.
Consequently, there exists integrable, covariant derivatives on many non-projective
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A-modules M . In contrast, we mention the following result on the existence of
D-module structures on M

Theorem 4.17. Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding
monomial curve, and let D be the ring of differential operators on A. For a torsion
free, Z-graded A-module M of rank 1, there exists a D-module structure on M
compatible with the A-module structure if and only if M is projective.

Proof. We may assume that M = k[Λ], where Γ ⊆ Λ ⊆ N0 and Γ + Λ ⊆ Λ.
Assume that ρ : D → DA(M) defines a D-module structure on M compatible with
the A-module structure. Then ρ(E) = E+f with f ∈ EndA(M). Let m = tλ ∈M ,
and let Pw = twχw(E) ∈ D. Then ρ(Pw)(m) = twχw(E + f) ∗m ∈ M , and the
component of degree w + λ is given by twχw(λ + f0)m = χw(λ + f0)tλ+w. Since
the component of degree 0 must be in M , we obtain λ+ w ∈ Λ or χw(λ+ f0) = 0
for all λ ∈ Λ, w ∈ Z. For λ = 0, this gives χw(f0) = 0 for all w < 0. We
conclude that f0 = 0. Assume that Λ 6= Γ. Then we may choose λ ∈ Λ \ Γ. If
χw(λ+f0) = χw(λ) = 0, then λ ∈ Ω(w). In particular, λ ∈ Γ and this is impossible,
so w + λ ∈ Λ for all w ∈ Z. But this is impossible, so Λ = Γ. It is clear that if
Λ = Γ, then there exists a D-module structure on M compatible with the A-module
structure, so this concludes the proof.



CHAPTER 5

Non-commutative deformation theory

In this chapter, we will introduce a non-commutative deformation theory for
modules, which is due to Laudal (see Laudal [21], [22]). This theory generalizes the
well-known local or formal deformation theory, as given by Schlessinger [30], in the
case of deformations of modules: It will enable us to simultaneously deform a finite
family of modules. We will state it for left modules (there is a similar theory for
right modules), and we aim to make this introduction as self-contained as possible.

In the last section, we develop the theory of extensions of extensions of a finite
family M of left R-module with fixed extension type G. In particular, we show
that we can classify all such extensions of extensions via deformation theory. This
theory is also due to Laudal, and is described in Laudal [21].

1. The categories ap and âp

Let p be a fixed natural number, and consider the ring kp. This commutative
ring has a natural k-algebra structure via the map α 7→ (α, . . . , α) for α ∈ k,
and we shall always consider it as a k-algebra via this map. We denote the ideal
pri(kp) ⊆ kp by ki for 1 ≤ i ≤ p, where pri : kp → kp is the i’th projection, and
consider ki as a kp-module. Clearly, kp is an Artinian ring, and {k1, . . . , kp} is the
set of isomorphism classes of simple kp-modules.

A p-pointed k-algebra is a triple (S, f, g), where S is an associative ring, and
f : kp → S, g : S → kp are ring homomorphisms such that g ◦ f = id. A morphism
u : (S, f, g)→ (S′, f ′, g′) of p-pointed k-algebras is a ring homomorphism u : S → S′

such that the natural diagrams commute. That is, such that u◦f = f ′ and g′◦u = g.
We shall denote the category of p-pointed k-algebras by Ap. Notice that if (S, f, g)
is an object of Ap, then f is injective and g is surjective, and we shall identify kp

with its image in S. We often write S for the object (S, f, g) to simplify notation.
Let (S, f, g) be an object in Ap, and denote this object by S. We define the

radical of S to be I(S) = ker(g), which is an ideal in S. Furthermore, we denote
by J(S) the Jacobson radical of S. This radical is defined by

J(S) = {x ∈ S : xM = 0 for all simple left S-modules M}

and it is also an ideal in S (see Lam [18], Corollary 4.2). We shall write I, J for the
radicals I(S), J(S) when the meaning of these expressions is clear from the context.
Notice that the Jacobson radical J depends only on the ring S, while the radical I
depends on the structural morphism g as well.

For all objects S in Ap, the inclusion J(S) ⊆ I(S) holds: We have J(kp) = 0
since kp is semi-simple, and g(J(S)) ⊆ J(kp) = 0 since g is a surjection (see
Anderson, Fuller [1], Corollary 15.8). In general, we know that S and S/J(S) have
the same simple left modules (see Lam [18], proposition 4.8). So if we consider
ki as a left S-module via the morphism g : S → kp for 1 ≤ i ≤ p, we see that
{k1, . . . , kp} is contained in the set of isomorphism classes of simple left S-modules,
and the equality J(S) = I(S) holds if and only if {k1, . . . , kp} is the full set of
isomorphism classes of simple left S-modules. Consequently, it is clear that the
equality I(S) = J(S) does not hold in general: For a counter-example, consider

57
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S = k[x]/(x−x2) with the natural k-algebra structure f : k → S and let g : S → k
be given by x 7→ 0. Then S is an object of A1, but J(S) 6= I(S) because S has two
non-isomorphic simple left S-modules (given by x 7→ 0 and x 7→ 1).

We denote by ei the idempotent (0, 0, . . . , 1, . . . , 0) ∈ kp for 1 ≤ i ≤ p. Notice
that eiej = 0 if i 6= j, and that e1 + · · · + ep = 1. For any object S in Ap, we
identify {e1, . . . , ep} with idempotents in S via the inclusion kp → S. Denote by
Sij the k-linear sub-space eiSej ⊆ S. We immediately see, using the properties of
the idempotents, that the following relations hold for 1 ≤ i, j, l,m ≤ p:

1. SijSlm ⊆ δjlSim,
2. Sij ∩ Slm = 0 if (i, j) 6= (l,m),
3.
∑
Sij = S.

In particular, we have that S = ⊕Sij , so every element s ∈ S may be written in
matrix form s = (sij) with sij ∈ Sij for 1 ≤ i, j ≤ p. Furthermore, elements of
S also multiply as matrices. It is therefore reasonable to call an object S in Ap a
matrix ring, and to write it S = (Sij). Notice that Sii is an associative ring (with
identity ei), and that Sij is a (unitary) Sii − Sjj bimodule for 1 ≤ i, j ≤ p. For
any ideal K ⊆ S, we see that eiKej = K ∩ Sij , and we shall denote this k-linear
subspace Kij for 1 ≤ i, j ≤ p. Since K = ⊕Kij , we write K = (Kij).

We recall that an associative ring is Artinian (Noetherian) if and only if it is
left and right Artinian (Noetherian). That is, if and only if the ring has the DCC
(ACC) for left ideals and for right ideals. We would like to have methods to decide
when an associative ring is Artinian or Noetherian. For objects in Ap, we state the
following useful proposition:

Proposition 5.1. Let S = (Sij) be an object in Ap. Then S is Noetherian (Ar-
tinian) if and only if the following conditions hold:

i) Sii is Noetherian (Artinian) for 1 ≤ i ≤ p,
ii) Sij is a Noetherian (Artinian) left Sii-module and a Noetherian (Artinian) right

Sjj-module for 1 ≤ i, j ≤ p, i 6= j.

Proof. Let Cj = ⊕Sij be the j’th column of S for 1 ≤ j ≤ p. Then each Cj is a
left S-module, and S is left Noetherian (Artinian) if and only if Cj is a Noetherian
(Artinian) left S-module for 1 ≤ j ≤ p. Furthermore, we see that Cj is a Noetherian
(Artinian) left S-module if and only if Sij is a Noetherian (Artinian) left Sii-module
for 1 ≤ i ≤ p. It follows that S is left Noetherian (Artinian) if and only if Sij is a
Noetherian (Artinian) left Sii-module for 1 ≤ i, j ≤ p. On the other hand, we may
consider the i’th row of S, Ri = ⊕Sij for 1 ≤ i ≤ p. A similar argument shows
that S is right Noetherian (Artinian) if and only if Sij is a Noetherian (Artinian)
right Sjj-module for 1 ≤ i, j ≤ p.

We recall that a finitely generated, associative k-algebra is not necessarily Noe-
therian. That is, Hilbert’s basis theorem does not hold for associative rings. For
a counter-example, let S = k{x1, . . . , xn} be the free, associative k-algebra on n
generators. It is well-known that S is Noetherian only if n = 1. However, we
know from the Hopkins-Levitzki theorem (see Lam [18], Theorem 4.15) that an
associative Artinian ring is Noetherian.

A k-algebra S is Artinian if S has finite dimension as k-vector space. This is
clear, since S is an Artinian k-vector space if and only if S has finite dimension as
k-vector space. We have a converse statement under certain conditions:

Lemma 5.2. Let S be an object of Ap, and let I = I(S). If S is Artinian and
In = 0 for some n ≥ 1, then S has finite dimension as a k-vector space.

Proof. Since S is Artinian, it is Noetherian, and Im is finitely generated as left
S-module for all m. Consequently, Im/Im+1 is a finitely generated left S/I-module
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for all m, and hence of finite dimension as a k-vector space. But In = 0, and
in particular a k-vector space of finite dimension. By induction, we see that Im

has finite dimension as a k-vector space for all m, and consequently, S has finite
dimension as a k-vector space.

We define the category ap to be the full sub-category of Ap consisting of objects
S in Ap such that S is Artinian and I(S) = J(S). The condition I(S) = J(S) might
equivalently be replaced by the condition that I(S) is a nilpotent ideal (that is, that
I(S)n = 0 for some n ≥ 1), since the Jacobson radical is the largest nilpotent ideal
in an Artinian ring (see Lam [18], Theorem 4.12). In particular, all objects S
in ap have finite dimension as k-vector spaces by lemma 5.2. From the comment
above, we also have a geometric interpretation of the condition I(S) = J(S): It
means that {k1, . . . , kp} is the set of isomorphism classes of simple left S-modules,
or equivalently, that the number of isomorphism classes of simple left S-modules is
p.

Let S be an object in Ap, with radical I = I(S). Then the I-adic filtration
defines a topology on S compatible with the ring operations (see Bourbaki [5],
chapter III, §2, no. 5), and we shall always consider S a topological ring in this
way. We say that the topology on S is Hausdorff (or separated) if and only if
∩In = 0.

For all objects S in Ap, there is an I-adic completion Ŝ of S and a canonical
morphism S → Ŝ in Ap. The I-adic completion Ŝ is defined by the projective limit

Ŝ = lim
←
S/In,

and the morphism S → Ŝ is the natural one induced by this projective limit. We
say that S is complete (or separated complete) if the natural morphism S → Ŝ is
an isomorphism in Ap. Since S/In ∼= Ŝ/I(Ŝ)n for all n ≥ 0, any I-adic completion
is complete. We remark that S is complete if and only if S is topologically complete
and has a Hausdorff topology.

We define the pro-category âp of ap to be the full sub-category of Ap consisting
of objects S in Ap such that S is complete and S/I(S)n belongs to ap for all n ≥ 1.
In particular, all objects S in âp have a topology which is Hausdorff. We also see
that there is an inclusion of categories ap ⊆ âp.

Let S be an object in âp, and let I = I(S). To fix notation, we denote by grn S
the k-vector space In/In+1 for n ≥ 0 (with I0 = S), and denote by grS = ⊕ grn S
the graded ring associated to the I-adic filtration of S. Furthermore, we define the
tangent space of S to be the k-linear space dual to gr1 S,

tS = Homk(I/I2, k) = (I/I2)∗,

which is clearly of finite dimension. In particular, we have (tS)∗ ∼= I/I2.
Let u : S → T be a morphism in âp. Since u preserves the given filtrations

of S and T , i.e. u(I(S)n) ⊆ I(T )n for all n ≥ 0, u induces a morphism of graded
rings gr(u) : grS → grT . Since gr(u) is homogeneous of degree 0, u also induces
morphisms of k-vector spaces grn(u) : grn S → grn T for all n ≥ 0. In particular, we
have a morphism of k-vector spaces gr1(u) : gr1 S → gr1 T , and a dual morphism
tu : tT → tS .

Proposition 5.3. Let u : S → T be a morphism in âp. Then u is a surjection if
and only if gr1(u) is a surjection. Furthermore, u is injective if gr(u) is injective.

Proof. If u is surjective, then clearly gr1(u) is also surjective. To prove the other
implication, let us consider the map gr(u) : gr(S)→ gr(T ). Since grT is generated
by the elements in gr1 T as an algebra, it follows that if gr1(u) is surjective, then
gr(u) is also surjective. From Bourbaki [5], chapter III, §2, no. 8, corollary 1 and
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2, we have that u is surjective (injective) if gr(u) is surjective (injective), and the
result follows.

Let n be any natural number. We define the category ap(n) to be the full
sub-category of ap consisting of objects S in ap such that I(S)n = 0. Notice that
ap(n) ⊆ ap(n + 1) for all n ≥ 1. Furthermore, each object S in ap belongs to a
sub-category ap(n) for some integer n.

We conclude this section with an important family of examples: Let Vij be
a finite dimensional k-vector space for 1 ≤ i, j ≤ p, with dimk Vij = dij . Let
furthermore {sij(l) : 1 ≤ l ≤ dij} be a basis of Vij for 1 ≤ i, j ≤ p (or simply {sij}
if dij = 1). We define the free matrix ring S = S({Vij}) defined by the vector
spaces Vij in the following way: We say that a monomial in S of type (i, j) and
degree n is an expression of the form

sm0m1(l1)sm1m2(l2) . . . smn−1mn(ln)

with m0 = i,mn = j. To these, we add the monomials ei for 1 ≤ i ≤ p, which
we consider to be of type (i, i) and degree 0. We define S to be the k-linear space
generated by all monomials in S, with the obvious multiplication: Let M be a
monomial of type (i, j), and M ′ a monomial of type (l,m). If j 6= l, then MM ′ = 0,
and otherwise the product is the new monomial obtained by juxtapositioning M
and M ′ (possibly after having erased unnecessary ei’s). We see that S is an object
of the category Ap, via the obvious maps kp → S → kp, and Sij is the k-linear
subspace generated by monomials in S of type (i, j). The ideal I = I(S) is the
k-linear subspace generated by all monomials of positive degree.

We denote by Ŝ = Ŝ({Vij}) the completion of S, and call this the formal
matrix ring defined by the vector spaces Vij . Explicitly, every element in Ŝij is an
infinite k-linear sum of monomials in S of type (i, j). Let I = I(S). We have that
Sn = S/In ∼= Ŝ/I(Ŝ)n belongs to ap for n ≥ 1: Clearly, Sn has finite dimension
as k-vector space, so Sn is Artinian, and I(Sn) = I/In, so the radical is nilpotent.
Since Ŝ clearly is complete, it follows that Ŝ belongs to âp.

Notice that neither S nor Ŝ is Noetherian in general. For a counter-example,
it is enough to consider the case when p = 2 and d11 = d12 = d21 = 1, d22 = 0.
In this case, S11 = k{s11, s12s21} ∼= k{x, y}, which is not Noetherian. Similarly,
Ŝ11 ∼= k{{x, y}}, which is not Noetherian. So by proposition 5.1, neither S nor Ŝ
is Noetherian in this case.

2. Non-commutative deformation functors

Let R be a fixed associative k-algebra, and let M = {M1, . . . ,Mp} be a finite
family of left R-modules. In this section, we shall define a deformation functor

DefM : ap → Sets

describing how these R-modules can be deformed simultaneously.
Let S be an object of ap. A lifting of the family M of left R-modules to

S is a left R ⊗k Sop-module MS , together with isomorphisms of left R-modules
ηi : MS ⊗S ki →Mi for 1 ≤ i ≤ p, such that MS

∼= (Mi⊗k Sij) as right S-modules.
We remark that a left R⊗k Sop-module is the same as an R-S bimodule such that
the left and right k-vector space structures coincide. Furthermore, the notation
(Mi ⊗k Sij) refers to the k-vector space

(Mi ⊗k Sij) = ⊕
i,j

(Mi ⊗k Sij)

with the natural right S-module structure coming from the multiplication in S. The
condition that MS

∼= (Mi⊗k Sij) as right S-modules replaces the flatness condition
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in the theory of local deformations, and we shall refer to it as the flatness condition
in this theory as well.

Let M ′S ,M
′′
S be two liftings of M to S. We say that these two liftings are

equivalent if there exists an isomorphism τ : M ′S → M ′′S of left R ⊗k Sop-modules
such that the natural diagrams commute. That is, such that η′′i ◦ (τ ⊗S ki) = η′i for
1 ≤ i ≤ p. We let DefM(S) denote the set of equivalence classes of liftings of M to
S, and we refer to these equivalence classes as deformations of M to S. We shall
often denote a deformation represented by (MS , ηi) by MS to simplify notation.

Let u : S → T be a morphism in ap, and let MS be a lifting of M to S,
representing an element in DefM(S). We define MT = MS ⊗S T , which has a
natural structure as a left R⊗k T op-module. Since u is a morphism in ap, we have
natural isomorphisms of left R-modules

(MS ⊗S T )⊗T ki ∼= MS ⊗S ki,
inducing isomorphisms of left R-modules ρi : MT ⊗T ki →Mi via ηi for 1 ≤ i ≤ p.
A straight-forward calculation shows that MT together with the isomorphisms ρi
for 1 ≤ i ≤ p constitutes a lifting of M to T , and furthermore that the equivalence
class of this lifting is independent upon the representative of the equivalence class
of MS . Hence, we obtain a map DefM(u) : DefM(S) → DefM(T ), and we see that
DefM : ap → Sets is a covariant functor.

Let S = (Sij) be an object in ap. We shall give a more explicit way of calculating
DefM(S): We may assume that every element of DefM(S) is represented by a lifting
MS , such that MS = (Mi ⊗k Sij) considered as a right S-module. In order to
describe this lifting completely, it is enough to describe the left action of R on MS .
Furthermore, it is enough to describe this action on elements of the form mi ⊗ ei
with mi ∈Mi, since we have

r(mi ⊗ sij) = (r(mi ⊗ ei))sij
for all r ∈ R, mi ∈ Mi, sij ∈ Sij . For a fixed r ∈ R, mi ∈ Mi, assume that
r(mi ⊗ ei) =

∑
(m′j ⊗ s′jl) with m′j ∈ Mj , s

′
jl ∈ Sjl. Then multiplication by ei on

the right gives the equality

r(mi ⊗ ei) =
∑
j

(m′j ⊗ s′ji),

and the isomorphism ηi gives a further restriction on the left action of R, expressed
by the formula

r(mi ⊗ ei) = (rmi)⊗ ei +
∑
j

m′j ⊗ s′ji,(3)

where r ∈ R, mi ∈ Mi, m
′
j ∈ Mj , s

′
ji ∈ I(S)ji. Consequently, the set DefM(S)

consists of all possible ways of choosing a left R-action on elements of the form mi⊗
ei, fulfilling the above conditions and the associativity condition, up to equivalence.

Let S be any object in ap. Then the formula r(mi ⊗ ei) = (rmi) ⊗ ei for
r ∈ R, mi ∈ Mi defines a left R-module structure on (Mi ⊗ Sij) compatible with
the right S-module structure. Hence, there exists a trivial lifting MS to S for all
objects S in ap, and DefM(S) is non-empty. Notice that in the case S = kp, we have
I = I(S) = 0, such that this trivial lifting is the only one possible. Consequently,
we have DefM(kp) = {∗}, where ∗ denotes the equivalence class of the trivial lifting.

Let u : S → T be a morphism in Ap, and let MT ∈ DefM(T ) be a given
deformation. We say that a deformation MS ∈ DefM(S) is a lifting of MT or is
lying over MT if DefM(u)(MS) = MT . Given any object S in Ap and a deformation
MS ∈ DefM(S), we see that MS is a lifting of the trivial deformation ∗ in DefM(kp)
in the above sense, relative to the structural morphism g : S → kp. Hence, our
notation is consistent.
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For another example, consider the test algebras S(m,n) for 1 ≤ m,n ≤ p,
constructed in the following way: Let S be the free matrix algebra defined by the
k-vector spaces Vij with dij = 1 if (i, j) = (m,n), and dij = 0 otherwise. Then
we define S(m,n) = S/I(S)2, and this is an object in ap by construction. Let
ξ ∈ Ext1

R(Mn,Mm), then there exists a derivation ψ ∈ Derk(R,Homk(Mn,Mm))
representing ξ in Hochschild cohomology (see appendix A for a general reference of
Hochshild cohomology). We denote by M(ψ) the lifting of M to S(m,n) given by
the left R-action

r(mi ⊗ ei) = (rmi)⊗ ei + δinψ(r)(mn)⊗ εmn
with r ∈ R, mi ∈ Mi, 1 ≤ i ≤ p, and where εmn is the equivalence class of smn
in S(m,n). A straight-forward calculation shows that the liftings M(ψ), M(ψ′)
are equivalent if and only if ψ,ψ′ ∈ Derk(R,Homk(Mn,Mm)) define the same ele-
ment in Ext1

R(Mn,Mm). Furthermore, we see that any lifting of M to S(m,n) is
of the form M(ψ) with ψ ∈ Derk(R,Homk(Mn,Mm)), up to equivalence. Hence,
the map ψ 7→ M(ψ) induces an isomorphism of sets between Ext1

R(Mn,Mm) and
DefM(S(m,n)). In particular, DefM(S(m,n)) has a natural k-vector space struc-
ture inherited from Ext1

R(Mn,Mm).

3. Pro-representing hulls of functors on ap

Let F : ap → Sets be a functor. In this section, we shall consider such functors
which are pointed, that is, such that F(kp) = {∗}. Notice that any functor F on ap
may be extended to a functor F̂ : âp → Sets on the pro-category âp by the formula

F̂(S) = lim
←

F(S/In)

for objects S in âp with I = I(S). Furthermore, any functor F on ap has a restriction
Fn : ap(n)→ Sets to the sub-category ap(n).

Let R be an associative k-algebra, and M a finite family of left R-modules. As
we have seen in the previous section, DefM is an example of a pointed functor on
ap. For another example, let S be an object in âp. We define hS to be the functor
Mor(S,−) : ap → Sets, where Mor denotes the morphisms in the pro-category âp.
Since hS(kp) = {∗}, this is a also a pointed functor on ap.

Lemma 5.4. Let S be an object in âp, and let F : ap → Sets be a functor. Then
there is a natural isomorphism of sets

α : F̂(S)→ Mor(hS ,F),

where Mor denotes the morphisms in the category of functors from ap to Sets.

Proof. Let ξ ∈ F̂(S), then ξ = (ξn) with ξn ∈ F(S/In) for all n ≥ 1. For any
object T in ap, we construct a map of sets α(ξ)T : Mor(S, T )→ F(T ): Let u : S → T
be a morphism in âp, then u(I(S)) ⊆ I(T ), and I(T ) is nilpotent since T is in ar,
so there exists n ≥ 1 such that u factorizes through un : S/I(S)n → T . We define
α(ξ)T (u) = F(un)(ξn), and a straight-forward calculation shows that this expression
is independent upon the choice of n, and gives rise to a natural transformation of
functors. Conversely, let φ : hS → F be a natural transformation of functors on
ap. Then we define ξn ∈ F(S/I(S)n) to be ξn = φS/I(S)n(S → S/I(S)n), where
S → S/I(S)n is the natural morphism. Again, a straight-forward calculation shows
that ξ = (ξn) defines an element in F̂(S), and that this map of sets defines an inverse
to α.

There is also a version of lemma 5.4 for the category ap(n): For an object S in
ap(n), and a functor F : ap(n)→ Sets, there is a natural isomorphism of sets

αn : F(S)→ Mor(hS ,F),
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where Mor denotes the morphisms in the category of functors from ap(n) to Sets.
The construction of this isomorphism is similar to the construction in lemma 5.4.

We recall that a morphism φ : F → G of functors F,G : ap → Sets is smooth
if the following condition holds: For all surjective morphisms u : S → T in ap, the
natural map of sets

F(S)→ F(T )×G(T ) G(S),(4)

given by x 7→ (F(u)(x), φS(x)) for all x ∈ F(S), is a surjection. Notice that any
morphism φ : F → G of functors naturally extends to a morphism φ̂ : F̂ → Ĝ of
functors on âp. If φ is a smooth morphism, then φ̂S : F̂(S) → Ĝ(S) is surjective
for all objects S in âp.

Similarly, we say that a morphism φ : F → G of functors F,G : ap(n) → Sets
on ap(n) is smooth if the map of sets (4) is surjective for all surjective morphisms
u : S → T in ap(n). Clearly, a morphism φ : F→ G of functors on ap is smooth if
and only if the restriction φn : Fn → Gn is smooth for all integers n.

Consider a morphism u : S → T in ap, and denote by I = I(S) the radical of
S and by K = ker(u) the kernel of u. We say that u is small if IK = KI = 0.
Notice that we do not insist that K is a 1-dimensional k-vector space. If u : S → T
is surjective, then u can be factored into a finite number of small surjections, since
I is nilpotent. Clearly, the assignment of the map of sets (4) to the morphism
u respects compositions. A morphism φ : F → G of functors on ap is therefore
smooth if and only if the map (4) is surjective for all small surjective morphisms
u : S → T in ap.

Let F be a fixed functor on ap. A pro-couple for F is a pair (S, ξ), where S is
an object in âp and ξ ∈ F̂(S) is an element. A morphism u : (S, ξ) → (S′, ξ′) of
pro-couples is a morphism u : S → S′ in âp such that F̂(u)(ξ) = ξ′. A couple for F
is a pair (S, ξ), where S is an object of ap, and ξ ∈ F(S) is an element. Morphisms
of couples are defined similarly. We say that a pro-couple (S, ξ) pro-represents F if
α(ξ) : hS → F is an isomorphism of functors, and that a couple (S, ξ) represents F
if α(ξ) : hS → F is an isomorphism of functors. It is clear that if the couple (S, ξ)
represents F, then this couple is unique up to a unique isomorphism of couples.

Similarly, let F be a fixed functor on ap(n). We define a couple for F to be a
pair (S, ξ), where S is an object of ap(n) and ξ ∈ F(S) is an element. We say that
the couple (S, ξ) represents F if and only if αn(ξ) is an isomorphism. It is clear
that if this is the case, the couple (S, ξ) is unique up to a unique isomorphism of
couples.

Let F be a functor on ap, and let (S, ξ) be a pro-couple for F. Then there exists
a couple (Sn, ξn) for Fn for all integers n, given in the following way: Sn = S/I(S)n,
u : S → Sn is the canonical surjection, and ξn = F(u)(ξ). Notice that for all integers
n, the morphism αn(ξn) is the restriction of the morphism α(ξ) to ap(n). It follows
that (S, ξ) pro-represents F if and only if (Sn, ξn) represents Fn for all integers n.
In particular, it follows that if there exists a pro-couple (S, ξ) which pro-represents
F, then this pro-couple is unique up to a unique isomorphism of pro-couples.

Definition 5.5. Let F be a functor on ap. A pro-representing hull (or a hull) for
F is a pro-couple (S, ξ) such that the following conditions hold:

i) α(ξ) is a smooth morphism of functors,
ii) (S2, ξ2) represents F2.

We conclude this section by proving the uniqueness of the pro-representing hull,
if it exists. Notice that the pro-representing hull is only unique up to non-canonical
isomorphism.
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Proposition 5.6. Let F : ap → Sets be a functor, and assume that (S, ξ), (S′, ξ′)
are two pro-representing hulls for F. Then there exists an isomorphism of pro-
couples u : (S, ξ)→ (S′, ξ′).

Proof. Let φ = α(ξ), φ′ = α(ξ′). Since φ, φ′ are smooth morphisms, we have
that φS′ and φ′S are surjective. So there are morphisms u : (S, ξ) → (S′, ξ′) and
v : (S′, ξ′)→ (S, ξ) of pro-couples for F. The restriction to ap(2) gives us morphisms
u2 : (S2, ξ2) → (S′2, ξ

′
2) and v2 : (S′2, ξ

′
2) → (S2, ξ2). But both (S2, ξ2) and (S′2, ξ

′
2)

represent F2, so u2 and v2 are inverses. In particular, gr1(u2) and gr1(v2) are
inverses, and (v ◦u)2 = v2 ◦u2 = id. From the proof of proposition 5.3, we see that
gr(v ◦u) is surjective. This means that grn(v ◦u) is a surjective endomorphims of a
finite dimensional k-vector space for all n ≥ 1, so gr(v ◦ u) is an isomorphism. By
proposition 5.3, v ◦ u is an isomorphism as well, and the same holds for u ◦ v by a
symmetric argument. It follows that u and v are isomorphisms.

4. Hulls of non-commutative deformation functors

Let R be an associative k-algebra, and M = {M1, . . . ,Mp} a finite family of
left R-modules. The aim of this section is to show that the functor DefM has a
pro-representing hull (H, ξ), and furthermore to construct this hull explicitly. We
will do this, following Laudal [19], [20], under the assumption that ExtnR(Mi,Mj)
has finite dimension as a k-vector space for n = 1, 2, 1 ≤ i, j ≤ p. We remark that
it is possible to generalize this result to the case of countable dimension, see Laudal
[19].

Proposition 5.7. Let u : S → T be a small, surjective morphism in ap with ker-
nel K = ker(u), and let MT in DefM(T ) be a deformation. Then there exists a
canonical obstruction

o(u,MT ) ∈ (Ext2
R(Mi,Mj)⊗k Kji),

such that o(u,MT ) = 0 if and only if there exists a deformation MS in DefM(S)
lifting MT . If this is the case, the set of deformations in DefM(S) lifting MT is a
torsor under the k-vector space

(Ext1
R(Mi,Mj)⊗k Kji).

Proof. We recall from section 2 that up to equivalence, we may assume that
MT has the following form: MT = (Mi ⊗k Tij) with the natural right T -module
structure, and with a left R-module structure given by the k-linear homomorphisms
r : Mi → ⊕(Mj⊗kTji) for all r ∈ R. Via the natural projections, the map r give rise
to k-linear maps rij : Mi →Mj ⊗k Tji for r ∈ R, 1 ≤ i, j ≤ p. Since u is surjective,
we may choose k-linear maps L(r)ij : Mi →Mj⊗kSji such that (id⊗u)◦L(r)ij = rij
for r ∈ R, 1 ≤ i, j ≤ p. Let L(r) = (L(r)ij) ∈ (Homk(Mi,Mj ⊗k Sji)), this defines
a k-linear left action of R on MS = (Mi⊗k Sij), lifting the left R-module structure
on MT . We let Q′ = (Homk(Mi,Mj⊗k Sji)), and remark that this is an associative
k-algebra in a natural way: We compose the k-linear morphisms in Q′ by using the
multiplication in S.

For r, s ∈ R, consider the expression L(rs)−L(r)L(s) ∈ Q′. By the associativity
of the left R-module structure on MT , we see that L(rs) − L(r)L(s) ∈ Q, where
Q = (Homk(Mi,Mj ⊗k Kji)) ⊆ Q′. Furthermore, we notice that Q ⊆ Q′ is an
ideal, and therefore Q has a natural structure as a R-R bimodule via L. We define
ψ ∈ Homk(R ⊗k R,Q) to be given by ψ(r, s) = L(rs) − L(r)L(s) for all r, s ∈ R.
A straight-forward calculation shows that ψ is a 2-cocycle in HC∗(R,Q), so ψ
gives rise to an element o(u,MT ) ∈ HH2(R,Q). (See appendix A for a general
reference of Hochschild cohomology). Since u is a small morphism, K2 = 0 and
therefore Q2 = 0. If follows that if L′ is another k-linear lifting of the left R-module
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structure on MT , then the R-R bimodule structures of Q given by L and L′ coincide.
Therefore, HH∗(R,Q) is independent upon the choice of L, and a straight-forward
calculation shows that the same holds for the obstruction o(u,MT ).

We remark that there exists a deformation MS ∈ DefM(S) lifting MT if and
only if there exists some k-linear lifting L′ : R→ Q′ of the left R-module structure of
MT such that L′(rs) = L′(r)L′(s) for all r, s ∈ R. Let τ = L′−L, then τ : R→ Q is
a k-linear map. And a straight-forward calculation shows that L′(rs) = L′(r)L′(s)
if and only if the relation

L(rs)− L(r)L(s) = L(r)τ(s)− τ(rs) + τ(r)L(s) + τ(r)τ(s)

holds. Since φ is small, Q2 = 0, and the last term vanishes. The fact that the above
relation holds for all r, s ∈ R is therefore equivalent to the fact that o(u,MT ) = 0 in
HH2(R,Q). We have therefore established that there exists a canonical obstruction
o(u,MT ) ∈ HH2(R,Q) such that o(u,MT ) = 0 if and only if there is a lifting of
MT to S.

Assume that L : R→ Q′ is such that L(rs) = L(r)L(s) for all r, s ∈ R, that is,
such that it defines a deformation MS lying over MT . For any other k-linear lifting
L′ : R→ Q′ of the left R-module structure on MT , we may consider the difference
τ = L′ − L : R→ Q. A straight-forward calculation shows that τ is a 1-cocycle in
HC∗(R,Q) if and only if L′(rs) = L′(r)L′(s) for all r, s ∈ R, that is, if and only if
L′ defines a left R-module structure on MS . Furthermore, we have that L and L′

give rise to equivalent deformations if and only if τ is a 1-coboundary: It is clear
that any equivalence between the left R-module structures of MS = (Mi ⊗k Sij)
given by L and L′ has the form id + ψ, where ψ ∈ Q. Furthermore, the map
id+ ψ : MS → MS (with the left R-module structure from L′ and L respectively)
is a left R-module homomorphism if and only if L(r)(id+ψ) = (id+ψ)L′(r) holds
for all r ∈ R, and this last condition is equivalent with the fact that τ = d(ψ), so
that τ is a 1-coboundary. If τ is a 1-boundary in HC∗(R,Q), it is also clear that
id + ψ defines an equivalence between the two deformations given by L and L′.
Therefore, the set of deformations MS lying over MT is a torsor under the k-vector
space HH1(R,Q).

To end the proof, we have to show that there are isomorphisms of k-vector
spaces HHn(R,Q) ∼= (ExtnR(Mi,Mj) ⊗k Kji) for n = 1, 2: Since L(r) is a lifting
to MS of the left multiplication of r on MT (satisfying equation 3), L(r) satisfies
equation 3 as well. That is, we have L(r)ij(mi) − δij(rmi) ⊗ ei ∈ Mj ⊗k Iji for
all r ∈ R, mi ∈ Mi, 1 ≤ i, j ≤ p. But I(S)K = 0 since u is small, so the
R-R bimodule structure of Q defined above via L coincides with the following
natural one: Let Qij = Homk(Mi,Mj ⊗k Kji) be the (i, j)’th component of Q,
which has a natural R-R bimodule structure since Mi and Mj ⊗k Kji are left
R-modules in a natural way (see appendix A). This defines a component-wise
bimodule structure on Q. The natural isomorphism HCn(R,Q)→ (HCn(R,Qij)),
which is given by the natural projections, defines an isomorphism of complexes.
Therefore, we have HHn(R,Q) ∼= (HHn(R,Qij)) for all n ≥ 0. By appendix A,
proposition A.3, we have HHn(R,Qij) ∼= ExtnR(Mi,Mj ⊗k Kji) for n ≥ 0. But we
have ExtnR(Mi,Mj ⊗k Kji) ∼= ExtnR(Mi,Mj) ⊗k Kji, since Kji is a k-vector space
of finite dimension. This completes the proof of proposition 5.7.

Let u : S → T and u′ : S′ → T ′ be two small surjections in ap, let K = ker(u)
and K ′ = ker(u′). Assume that v : S → S′ and w : T → T ′ are morphisms such
that u′ ◦ v = w ◦ u. Then v(K) ⊆ K ′, and the map v induces a k-linear map of
obstruction spaces

(Ext2
R(Mj ,Mi)⊗k Kij)→ (Ext2

R(Mj ,Mi)⊗k K ′ij).
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From the proof of proposition 5.7, we observe that if MT is a deformation of M
to T and MT ′ = DefM(w)(MT ) is the corresponding deformation to T ′, then this
map of obstruction spaces maps o(u,MT ) to o(u′,MT ′).

We shall now start the construction of the pro-representing hull (H, ξ) of DefM,
using the obstruction theory for DefM. Let us therefore fix the following notation:
Let {sij(l) : 1 ≤ l ≤ dij} be a basis for Ext1

R(Mj ,Mi)∗ and {tij(l) : 1 ≤ l ≤ rij}
be a basis for Ext2

R(Mj ,Mi)∗ for 1 ≤ i, j ≤ p, with dij = dimk Ext1
R(Mj ,Mi) and

rij = dimk Ext2
R(Mj ,Mi). Furthermore, we let ψlij ∈ Derk(R,Homk(Mj ,Mi)) be

a representative of sij(l)∗ ∈ Ext1
R(Mj ,Mi) via Hochschild cohomology. Finally,

we define T1 = Ŝ({Ext1
R(Mj ,Mi)∗}) and T2 = Ŝ({Ext2

R(Mj ,Mi)∗}) to be the
corresponding formal matrix rings in âp.

First, let us show that DefM restricted to ap(2) is representable: We define H2
to be the object H2 = T1

2 = T1/I(T1)2 in ap(2). For all objects S in ap(2), we get
Mor(H2, S) ∼= (Homk(Ext1

R(Mj ,Mi)∗, I(S)ij)) ∼= (Ext1
R(Mj ,Mi) ⊗k I(S)ij), and

DefM(S) ∼= (Ext1
R(Mj ,Mi)⊗kI(S)ij) from proposition 5.7 applied to the morphism

S → kp. The isomorphisms we obtain in this way are compatible, so they induce an
isomorphism φ : hH2 → DefM of functors on ap(2). From the version of lemma 5.4
for the category ap(2), we see that there is a unique deformation ξ2 ∈ DefM(H2)
such that α2(ξ2) = φ. By definition, (H2, ξ2) represents DefM restricted to ap(2).

Let us also give an explicit description of the deformation ξ2: We have H2 = T1
2,

so let us denote by εij(l) the image of sij(l) in H2 for 1 ≤ i, j ≤ p, 1 ≤ l ≤ dij .
Then ξ2 is represented by (Mi ⊗k (H2)ij) with left R-module structure given by

r(mi ⊗ ei) = rmi ⊗ ei +
∑
j,l

ψlji(r)(mi)⊗ εji(l)

for all r ∈ R, mi ∈Mi and 1 ≤ i ≤ p.

Theorem 5.8. Let R be an associative k-algebra, and M = {M1, . . . ,Mp} a finite
family of left R-modules such that ExtnR(Mi,Mj) is a finite dimensional k-vector
space for n = 1, 2, 1 ≤ i, j ≤ p. Then there exists a morphism o : T2 → T1 in âp
such that H(M) = T1⊗̂T2kp is a pro-representing hull for DefM.

Proof. For simplicity, we write I for the ideal I = I(T1). For all n ≥ 1, we
denote by T1

n the quotient T1
n = T1/In, and by tn : T1

n+1 → T1
n the natural

morphism. From the paragraphs preceding this theorem, we know that (H2, ξ2)
represents DefM restricted to ap(2). Let o2 : T2 → T1

2 be the trivial morphism
(that is, o2 is such that o2(I(T2)) = 0), then H2 ∼= T1

2 ⊗T2 kp. Using o2 and ξ2
as a starting point, we construct on for n ≥ 3 by an inductive process. So let
n ≥ 2, and assume that the morphism on : T2 → T1

n is given. Furthermore, let the
deformation ξn ∈ DefM(Hn) be given, with Hn = T1

n ⊗T2 kp. Notice that for each
n ≥ 2, we may assume that on is constructed such that tn−1 ◦ on = on−1, and that
ξn is chosen as a lifting of ξn−1.

Let us now construct the morphism on+1 : T2 → T1
n+1: We let a′n be the ideal

in T1
n generated by on(I(T2)). Then a′n = an/I

n for an ideal an ⊆ T1 with In ⊆ an,
and Hn

∼= T1/an. We obtain the following commutative diagram:

T2

on

!!CCCCCCCC T1
n+1

��

// T1/Ian

��
T1
n

// Hn = T1/an

Observe that right vertical morphism is a small surjection. So by proposition 5.7,
there is an obstruction o′n+1 = o(T1/Ian → Hn, ξn) for lifting ξn to T1/Ian, and
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we have

o′n+1 ∈ (Ext2
R(Mj ,Mi)⊗k (an/Ian)ij) ∼= (Homk(gr1(T2)ij , (an/Ian)ij)).

Consequently, we obtain a morphism o′n+1 : T2 → T1/Ian. Let a′′n+1 be the ideal in
T1/Ian generated by o′n+1(I(T2)). Then a′′n+1 = an+1/Ian for an ideal an+1 ⊆ T1

with Ian ⊆ an+1 ⊆ an. We define Hn+1 to be Hn+1 = T1/an+1, and we obtain the
following commutative diagram:

T2

on !!CCCCCCCC

o′n+1

++
T1
n+1

��

// T1/Ian //

��

Hn+1 = T1/an+1

vvmmmmmmmmmmmmm

T1
n

// Hn = T1/an

By the choice of an+1, the obstruction for lifting ξn to Hn+1 is zero. We can
therefore choose a deformation ξn+1 ∈ DefM(Hn+1) lying over ξn.

We know that tn−1 ◦ on = on−1, which means that an−1 = In−1 + an. For sim-
plicity, let us write O(K) = (Homk(gr1(T2)ij ,Kij)) for any ideal K, and consider
the following commutative diagram of k-vector spaces, in which the columns are
exact:

0

��

0

��
O(Ian/In+1)

��

tn // O(Ian−1/I
n)

��
O(an/In+1)

rn+1

��

kn // O(an−1/I
n)

rn

��
O(an/Ian)

��

ln // O(an−1/Ian−1)

��
0 0

We may consider consider on as an element in O(an−1/I
n). On the other hand,

o′n+1 ∈ O(an/Ian), and from the commutativity of the previous diagram, we have
ln(o′n+1) = rn(on). But from the construction, on is an element of O(an/In) as
well, and we can find an element on+1 ∈ O(an/In+1) such that kn(on+1) = on.
Let furthermore o′n+1 = rn+1(on+1). Then d′ = o′n+1 − o′n+1 ∈ ker(ln). But the
top horizontal morphism tn is surjective, since an−1 = an + In−1. By the snake
lemma, it follows that d′ = rn+1(d) with d ∈ ker(kn). We let on+1 = on+1 +d, then
on+1 ∈ O(an/In+1) satisfies kn(on+1) = on and rn+1(on+1) = o′n+1. If follows that
on+1 defines a morphism on+1 : T2 → T1

n+1 in âp such that tn ◦ on+1 = on and
such that T1

n+1 ⊗T2 kp ∼= Hn+1.
Using this construction, we obtain a morphism on : T2 → T1

n and a deformation
ξn ∈ DefM(Hn), with Hn = T1

n ⊗T2 kp, for all n ≥ 1. From the construction,
we see that there are morphisms hn : Hn+1 → Hn for all n ≥ 1, and we have
Hn+1/I(Hn+1)n ∼= Hn. Let o : T2 → T1 be the morphism defined by the projective
limit of the morphisms on, and let H be the corresponding object in Ap,

H = T1⊗̂T2kp ∼= lim
←
Hn.
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Then, H/I(H)n ∼= Hn+1/I(Hn+1)n ∼= Hn, so H is an object in the pro-category
âp. Let ξ ∈ DefM(H) be the deformation given by the projective limit of the
deformations ξn. Then (H, ξ) is a pro-couple for DefM. It only remains to show
that (H, ξ) is a pro-representable hull for DefM.

It is clearly enough to show that (Hn, ξn) is a pro-representing hull for DefM
restricted to ap(n) for all n ≥ 3. So let φ = αn(ξn) be the morphism of functors
on ap(n) corresponding to ξn. We shall prove that φ is a smooth morphism. So
let u : S → T be a small surjection in ap(n), and assume that MS ∈ DefM(S) and
v ∈ Mor(H,T ) are given such that DefM(u)(MS) = φT (v) = MT . Since I(T )n = 0,
we may consider v as a morphism in Mor(Hn, T ). Now, let us consider the following
commutative diagram:

T1/Ian

��
T1

;;wwwwwwwww
//

##GGGGGGGGG Hn+1

��

S

u

��
Hn v

// T

Let v′′ : T1 → S be any morphism making the diagram commutative. Then
v′′(an) ∈ ker(u), so v′′(Ian) = 0 since u is small. But the obstruction o(u,MT ) is ob-
viously zero, so v′′(an+1) = 0, and we obtain a morphism v′′ ∈ Mor(Hn+1, S) mak-
ing the above diagram commutative. Since v′′(I(Hn+1)n) = 0, we may consider v′′

as a morphism from Hn+1/I(Hn+1)n ∼= Hn, that is, v′′ ∈ Mor(Hn, S) = Mor(H,S).
We denote by M ′S the corresponding deformation in DefM(S). Since MS ,M

′
S are

two liftings of MT , the difference is an element d ∈ (Ext1
R(Mj ,Mi) ⊗k Kij) by

proposition 5.7, with K = ker(u). Hence, d defines a map D : T1 → S such that
D(I) ⊆ K. Clearly, D(I2) = 0 since u is small, so D factorizes through H. Let
v′ ∈ Mor(H,S) be given by v′(s) = v′′(s) +D(s) for all s ∈ I(H). Notice that this
is a ring homomorphism since u is small. Then φS(v′) = MS by construction, and
u ◦ v′ = u ◦ v′′ = v since D(I) ⊆ K = ker(u). It follows that φ is smooth, and this
concludes the proof of the theorem.

The theorem shows that the deformation functor DefM has a pro-representing
hull H = H(M) when the conditions of the theorem are fulfilled. In this case, we
know from proposition 5.6 that this hull must be unique, up to (non-canonical)
isomorphism. Furthermore, theorem 5.8 shows that the hull H can be calculated
from the obstruction morphism o : T2 → T1, which is defined by the obstruction
theory for DefM, as described in proposition 5.7.

There is another procedure for calculating the pro-representing hull H, us-
ing the cohomology groups Ext1

R(Mi,Mj) and certain generalized Massey prod-
ucts (called matrix Massey products) defined on these cohomology groups. These
Massey products are in a sense dual to the obstruction morphism o : T2 → T1. In
the case of the deformation functor of a module, in the sense of Schlessinger [30],
this procedure is explained in detail in Laudal [20] using symmetric matrix Massey
products. It is possible to adapt this procedure to our non-commutative deforma-
tion functors, using a non-symmetric variation of these matrix Massey products.

We say that a ring R is left (right) hereditary if the following condition holds:
For all left (right) R-modules M,N , we have ExtnR(M,N) = 0 for all n ≥ 2. We say
that R is hereditary if it is left and right hereditary. From theorem 5.8, it is clear
that if R is a left hereditary ring, then H = T1 is a hull for the deformation functor
DefM for any finite family M of left R-modules such that dimk Ext1

R(Mi,Mj) is
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finite for 1 ≤ i, j ≤ p. In this paper, we shall only be interested in non-commutative
deformation functors over hereditary rings. For this reason, we choose not to go
into the details of non-symmetric matrix Massey products in this paper.

5. Classification of extensions of extensions

Let R be an associative k-algebra, and let M = {M1, . . . ,Mp} be a finite family
of left R-modules. Throughout this section, we shall assume that the modules
M1, . . . ,Mp are non-isomorphic as left R-modules.

We define an extension of extensions of the family M to be a couple (M,F ),
where M is a left R-module and F is a finite, descending filtration of M of left
R-modules

M = F0 ⊇ F1 ⊇ · · · ⊇ Fn−1 ⊇ Fn = 0,

such that for 1 ≤ i ≤ n, Fi−1/Fi ∼= Mli with 1 ≤ l1, . . . , ln ≤ p. We say that the
couple (M,F ) has length n and order vector l = (l1, . . . , ln). Notice that the order
vector is uniquely defined by the filtration F , since the modules M1, . . . ,Mp are
non-isomorphic.

We denote by a co-filtration of M of length n a chain of surjections of left
R-modules

M = Cn → Cn−1 → · · · → C1 → C0 = 0.

This notion is equivalent with the notion of an ascending filtration on M of length
n: If F is a filtration, let C be the co-filtration with Ci = M/Fi and such that the
surjection Ci → Ci−1 is induced by id : M →M . Conversely, if C is a co-filtration
of M , let F be the filtration given by Fi = ker(M → Ci) and the natural inclusions.
We observe that ker(Ci → Ci−1) = coker(Fi → Fi−1) = Fi−1/Fi for 1 ≤ i ≤ n.

It turns out that it is most useful to represent an extension of extensions of the
family M as a couple (M,C), where M is a left R-module and C is a co-filtration
of M . We shall therefore keep this notation, and write n for the length of the
co-filtration and l for the order vector. Notice that we have short exact sequences

0→Mli → Ci → Ci−1 → 0

for 1 ≤ i ≤ n. So Ci is an extension of Ci−1 with Mli for 1 ≤ i ≤ n, and in
particular M is an extension of extensions of the family M in the sense of chapter
3. This justifies the name.

Let (M,C) and (M ′, C ′) be two extensions of extensions of the family M. We
say that (M,C) and (M ′, C ′) are equivalent extensions of extensions if there is an
isomorphism φ : M → M ′ such that C ′i = φ(Ci) for all integers i with 0 ≤ i ≤ n.
In particular, we see that equivalent extensions of extensions have the same length
n and order vector l. When φ defines an equivalence between (M,C) and (M ′, C ′),
we also see that for 1 ≤ i ≤ n, the extension

0→Mli → Ci → Ci−1 → 0

corresponds to the extension

0→Mli → C ′i → C ′i−1 → 0

via the map Ext1
R(Ci−1,Mli)→ Ext1

R(C ′i−1,Mli).
Let (M,C) be an extension of extensions, and let n be the length and l be

the order vector of (M,C). We define an ordered, directed graph to be a directed
graph (N,E), where N is a set of nodes and E is a set of edges with a given total
order. For each extension of extensions (M,C), we assign an ordered, directed
graph G = G(M,C) to (M,C): The graph G has nodes N = {1, 2, . . . , p} and
edges E = {a1, a2, . . . , an−1}, where ai is an edge from node li to node li+1, and
the total order on E is given by a1 < a2 < · · · < an−1. Notice that the ordered,



5. CLASSIFICATION OF EXTENSIONS OF EXTENSIONS 70

directed graph G is uniquely defined by the length n and the order vector l of
(M,C). We call G the extension type of the extension of extensions (M,C). The
previous remark implies that equivalent extensions of extensions have the same
extension type.

Let G be an ordered, directed graph. We say that G is finite if G has a finite
number of nodes and a finite number of edges. In this case, we may assume that the
nodes of G are N = {1, 2, . . . , p} and that the edges of G are E = {a1, . . . , an−1}
with a1 < · · · < an−1 for some natural numbers p, n. If the start of edge ai is the
same node as the end of edge ai−1 for 2 ≤ i ≤ n − 1, we say that the ordered,
directed graph G is connected. For an ordered, directed graph which is finite and
connected, we shall write li for the node which is the starting point of edge ai for
1 ≤ i ≤ n− 1, and ln for the node which is the ending point of arrow n− 1.

Let G be an ordered, directed graph which is finite and connected. We define
the associative k-algebra k[G] in the following way: For 1 ≤ i ≤ p, let ei be the
idempotent ei = (0, . . . , 1, . . . , 0) ∈ kp. We define k[G] to be the associative k-
algebra in Ap generated by kp and x1, . . . , xn−1, where xi are generators which
satisfy the matrix relations xi = eli+1xieli for all i and the additional relations
xixj = 0 if i ≤ j. It follows that k[G] satisfies In = 0, where I is the radical of
k[G], and that k[G] has finite dimension as a k-vector space. Consequently, k[G] is
an object in ap.

Assume that the family M = {M1, . . . ,Mp} is such that dimk Ext1
R(Mi,Mj)

is finite for 1 ≤ i, j ≤ p. Then the deformation functor DefM : ap → Sets has a
pro-representing hull H = H(M) by theorem 5.8, and we know that this hull is
unique up to non-canonical isomorphism. For any ordered, directed graph G which
is finite and connected, we consider the set X(M,G) = Mor(H, k[G]) of morphisms
from H to k[G] in the category in âp.

Lemma 5.9. Let M be a family of left R-modules such that dimk Ext1
R(Mi,Mj) is

finite for 1 ≤ i, j ≤ p, and let G be an ordered, directed graph which is finite and
connected. Then X(M,G) has a natural structure as an affine algebraic variety.

Proof. Let V hij = ExthR(Mj ,Mi)∗ for 1 ≤ i, j ≤ p and h = 1, 2. We define
T1 = Ŝ({V 1

ij}) to be the formal matrix ring defined by the vector spaces V 1
ij ,

and T2 = Ŝ({V 2
ij}) to be the formal matrix ring defined by the vector spaces V 2

ij .
Furthermore, we let {sij(l) : 1 ≤ l ≤ dij} be a basis for V 1

ij and {tij(l) : 1 ≤ l ≤ rij}
be a basis for V 2

ij for 1 ≤ i, j ≤ p. Clearly, the surjection T1 → H defines an
injective map X(M,G) → Mor(T1, k[G]) = Mor(T1

n, k[G]), where n − 1 is the
number of edges in G. Furthermore, we have that

Mor(T1
n, k[G]) ∼=

∏
i,j

Homk(Ext1
R(Mj ,Mi)∗,Wij),

with W = I(k[G]). This means that Mor(T1, k[G]) ∼= AN , where N is given by
N =

∑
(dij dimkWij). We choose a basis {wij(m) : 1 ≤ m ≤ vij} for Wij . Then

we obtain a set of coordinates zij(l,m) for the affine space AN , such that each
zij(l,m) corresponds to a morphism φij(l,m) given by

φij(l,m)(sij(l′)) = δl,l′wij(m)

for 1 ≤ i, j ≤ p, 1 ≤ l, l′ ≤ dij , 1 ≤ m ≤ vij . Consequently, we may write
Mor(T1, k[G]) = Spec k[{zij(l,m)}]. Let φ = (αij(l,m)) be a point in the affine
space AN , and let fij(l) be the image of o(tij(l)) in T1

n for 1 ≤ i, j ≤ p, 1 ≤ l ≤ rij .
We know that φ ∈ X(M,G) if and only if φ(fij(l)) = 0 for all fij(l). But we have

φ(fij(l)) =
∑
m

fij(l)(αij(l,m)) wij(m),
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so this condition translates to the equations

fij(l)(αij(l,m)) = 0

for 1 ≤ i, j ≤ p, 1 ≤ l ≤ dij , 1 ≤ m ≤ vij . It is clear that for each i, j, l,m, this
equation induces a polynomial relation Ri,j(l,m) ∈ k[{zij(l,m)}]. It follows that
X(M,G) = V ({Rij(l,m)}) ⊆ AN is an affine, algebraic variety.

We let A(M,G) be the affine coordinate ring of the affine variety X(M,G).
Then we have A(M,G) = k[{zij(l,m)}]/R, where R ⊆ k[{zij(l,m)}] is the ideal
generated by {Rij(l,m)}.

Let MH be the versal family defined over the hull H. That is, let MH be
a deformation MH ∈ DefM(H) such that (H,MH) is a pro-representing hull for
DefM. For any φ ∈ X(M,G), let Mφ be the deformation

Mφ = DefM(φ)(MH).

This is a deformation in DefM(k[G]) which depends on φ. From the definition of
the versal family MH , the map of sets X(M,G)→ DefM(k[G]), given by φ 7→Mφ,
is surjective.

Let us describe the deformation Mφ in detail, when φ ∈ X(M,G) is given: As
usual, we let Mφ be given as the trivial right k[G]-module

Mφ = (Mi ⊗k k[G]ij),

and let Mφ have a left R-module structure given in the following way: Let mi ∈Mi,
and consider mi ⊗ ei as an element in MH . Then r(mi ⊗ ei) ∈MH , and we define
left multiplication by r on the element (mi ⊗ ei) ∈Mφ to be

r(mi ⊗ ei) = (1⊗ φ)(r(mi ⊗ ei)),

where r(mi ⊗ ei) on the right side is the multiplication in MH = (Mi ⊗k Hij),
and 1 ⊗ φ : (Mi ⊗k Hij) → (Mi ⊗k k[G]ij) is the map given by the equation
(1⊗ φ)(mi ⊗ hij) = mi ⊗ φ(hij) for all mi ∈Mi, hij ∈ Hij .

Let M̃ ∈ DefM(k[G]) represent a deformation of the family M to k[G]. Clearly,
we have M̃ = (Mi ⊗k k[G]ij) considered as a right k[G]-module. We shall denote
by M ′ = (Mi ⊗k k[G]i,l1) the l1’th column of M̃ . We have seen that M ′ ⊆ M̃ is
invariant under the left R-module action on M̃ , so M ′ has a natural left R-module
structure. For each ordered subsequence j = (j1, . . . , jr) ⊆ (n−1, n−2, . . . , 1) with
ljr = l1, let us write M ′(j) = Mlj1+1⊗xj1xj2 . . . xjr ⊆M ′. We shall write M ′(U) for
the sum of M ′(j) for all sequences j of the form (i, i−1, . . . , 2, 1) for some integer i
with 0 ≤ i ≤ n−1, and we shall write M ′(B) for the sum of M ′(j) for all other sub-
sequences j with ljr = l1. Then M ′(U),M ′(B) ⊆ M ′ are k-linear subspaces with
M ′(U)+M ′(B) = M ′. Moreover, a calculation shows that M ′(B) is invariant under
the left R-action on M ′. So we have an R-linear homomorphism M ′ →M ′/M ′(B).
We shall denote by M the underlying left R-module of M ′/M ′(B), and we see that
M ∼= M ′(U) considered as k-vector spaces.

Let us construct a co-filtration of the left R-module M in the following way:
Let Fj ⊆M be given by

Fj =
n−1∑
i=j

Mli+1 ⊗ xixi−1 . . . x1

for 0 ≤ j ≤ n− 1. We see that Fj is invariant under the left R-action for all j. So
we a have a co-filtration of M of left R-modules of the form

M = Cn → Cn−1 → · · · → C1 → C0 = 0
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with Ci = M/Fi for 0 ≤ i ≤ n− 1 and Cn = M . It is clear that the co-filtration C
is such that ker(Ci → Ci−1) ∼= Mli as left R-modules for 1 ≤ i ≤ n. So (M,C) is
an extension of extensions of the family M of extension type G.

We also see that if M̃, Ñ are two equivalent deformations of M to k[G], then
the corresponding isomorphism

φ : M̃ → Ñ

of R-k[G] bimodules has the property that φ(M ′) ⊆ N ′ and φ(M ′(B)) ⊆ N ′(B).
So φ induces an isomorphism φ : M → N of left R-modules. If C,C ′ are the
corresponding filtrations of M ′ and N ′ respectively, then it is furthermore clear
that φ(Ci) ⊆ C ′i for 0 ≤ i ≤ n.

Proposition 5.10. Let M = {M1, . . . ,Mp} be a family of left R-modules such that
dimk Ext1

R(Mi,Mj) is finite for 1 ≤ i, j ≤ p, and let G be an ordered, directed
graph which is finite and connected. Then there is a natural bijective map between
DefM(k[G]) and the set of equivalence classes of extensions of extensions of the
family M with extension type G.

Proof. The construction given above clearly defines a map of sets from DefM(k[G])
to the set of equivalence classes of extensions of extensions of M with extension
type G. We construct an inverse of this map: Let (M,C) be an extension of ex-
tensions of M with extension type G. We let M̃ = (Mi ⊗k k[G]ij) considered as
a right k[G]-module. Then it is easy to see that the left R-module structure of M
and the filtration C of M generate a unique left R-module structure on M̃ , such
that M̃ represents a deformation in DefM(k[G]). Furthermore, equivalent exten-
sions of extensions of M with extension type G give equivalent deformations in
DefM(k[G]).

We define an equivalence relation on the set X(M,G) in the following way:
For morphisms φ, φ′ ∈ X(M,G), we say that φ, φ′ are equivalent if and only if
Mφ and Mφ′ are equivalent deformations in DefM(k[G]). That is, φ ∼ φ′ if and
only if Mφ = Mφ′ in DefM(k[G]). From the proposition above, we see that φ, φ′

are equivalent if and only if the corresponding extensions of extensions (M,C) and
(M ′, C ′) are equivalent extensions of extensions.

Consider the set of left R-modules M which has a co-filtration C such that
(M,C) is an extension of extensions of the family M with extension type G. We
denote by E(M,G) the set of isomorphism classes of left R-modules of this type.
Clearly, we have a surjective map of sets from the set of equivalence classes of
extensions of extensions of the family M with extension type G to E(M,G), given
by (M,C) 7→M . So we have a sequence of surjections

X(M,G)→ DefM(k[G])→ E(M,G).

Let S be any commutative k-algebra. We define an algebraic family of deforma-
tions of M to k[G] parametrized by S to be an R-(k[G]⊗k S) bimodule M(M,G, S)
such that the following conditions hold:

i) M(M,G, S) = (Mi ⊗k k[G]ij)⊗k S considered as right S-module.
ii) For each closed point P ∈ SpecS, the corresponding fiber M(M,G, S)P , given

by the R-k[G] bimodule M(M,G, S)P = M(M,G, S)⊗Sk(P ), is a deformation
of M to k[G].

Using this notation, we obtain the following proposition:

Proposition 5.11. Let M = {M1, . . . ,Mp} be a family of left R-modules such that
dimk Ext1

R(Mi,Mj) is finite for 1 ≤ i, j ≤ p, and let G be an ordered, directed
graph which is finite and connected. Then there exists a family M(M,G) of defor-
mations of M to k[G] parametrized by A(M,G) such that the fiber M(M,G)φ is
the deformation Mφ ∈ DefM(k[G]) for all closed points φ ∈ X(M,G).
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Proof. Let M(M,G) = (Mi⊗k k[G]ij)⊗k A(M,G) with trivial structure as right
k[G]⊗kA(M,G)-module, and with left R-module structure (modulo the squares of
the radicals) given by

r((mi ⊗ ei)⊗ 1) = ((rmi ⊗ ei)⊗ 1)

+
∑
j,l,m

(1⊗ φji(l,m))(r(mi ⊗ ei)− rmi ⊗ ei)⊗ zji(l,m),

where r(mi⊗ei)−rmi⊗ei is considered as an element in MH , and we write zji(l,m)
for the image of zji(l,m) in A(M,G). It is now straight-forward to check that this
family has the desired properties.

Corollary 5.12. Let M = {M1, . . . ,Mp} be a family of left R-modules such that
dimk Ext1

R(Mi,Mj) is finite for 1 ≤ i, j ≤ p, and let G be an ordered, directed
graph which is finite and connected. Then there exists a family of left R-modules
parametrized over A(M,G), realized as a quotient family of the family M(M,G),
such that all equivalence classes of E(M,G) occur as fibers of this family. In par-
ticular, E(M,G) is the quotient of the affine algebraic variety X(M,G) defined by
this family.



CHAPTER 6

Graded holonomic A1(k)-modules

Throughout this chapter, we fix the numerical semigroup Γ = N0. We shall
therefore write A = k[Γ] = k[t] and D = D(A) = A1(k). The purpose of this
chapter is to classify the indecomposable, graded, holonomic D-modules over the
Weyl algebra D = A1(k). We do this in two steps: First, we continue the work
from chapter 3 in order to classify all simple, graded D-modules in the case Γ = N0.
Secondly, we use the methods from chapter 5 to classify all indecomposable D-
modules which are extensions of extensions of the simple, graded D-modules.

We observe that the indecomposable, graded, holonomic D-modules correspond
exactly to the indecomposable, holonomic modules with regular singularities in the
local, analytic case, see Briançon and Maisonobe [7] and Boutet de Monvel [6] for
the classification in this case.

1. Simple, graded D-modules

Let Γ = N0, let A = k[Γ] = k[t], and let D = D(A) = A1(k). Let furthermore
M be a simple, graded D-module. Then, we recall from section 3.7 that M is either
an S-torsion D-module or an S-torsion free D-module. In the first case, S−1M = 0,
and we shall study this case in more detail.

The maximal ideals of A are exactly the ideals (t−α) ⊆ A for all α ∈ k. Given
an element α ∈ k, we denote by k(α) the residue field k(α) = A/(t − α). This
is an A-module, and hence V (α) = D ⊗A k(α) is a well-defined D-module for all
α ∈ k. It is easy to see that D is a free, right A-module with basis {∂i : i ≥ 0}.
This means that any element p ∈ V (α) can be written uniquely as a polynomial
p = p(∂) ∈ k[∂]. Furthermore, if we identify V (α) with k[∂] and write ∗ for the
induced left multiplication by D, we see that t ∗ p = αp− p′, and ∂ ∗ p = ∂p for all
p ∈ k[∂], where p′ denotes the formal derivative of p.

Theorem 6.1. Let D = A1(k). Then the set Simple(D)[S − torsion] of isomor-
phism classes of simple, S-torsion D-modules is given by {V (α) : α ∈ k}. Further-
more, V (α) ∼= D/D(t− α) for all α ∈ k.

Proof. See Block [4], proposition 4.1 and corollary 4.1.

For α = 0, we obtain the simple, graded, torsion D-module V (0) = D/Dt. A
simple argument shows that this is the only V (α) with α ∈ k which admits a graded
structure. In fact, we have the following result:

Corollary 6.2. Let D = A1(k). Then the set gr-Simple(D)[S − torsion] of equiv-
alence classes of simple, graded S-torsion D-modules is {V (0)}.

Proof. Let M be a simple, graded, S-torsion D-module. Then clearly, there is
an isomorphism M ∼= V (α) of D-modules for some unique α ∈ k. Assume that
α 6= 0. Since M is a simple, graded D-module, there is an isomorphism M ∼= D/I
of graded D-modules for some maximal, homogeneous left ideal I ⊆ D (up to a
twist). So D/I and D/D(t − α) are isomorphic D-modules, and the isomorphism
φ : D/Dt → D/I is given by right multiplication with some Q ∈ D in the sense
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that φ(P ) = PQ for all P ∈ D. Write Q = Q1 + · · · + Qn, where Qi is non-
zero and homogeneous for all i and deg(Q1) < deg(Q2) < · · · < deg(Qn). If
Q1 ∈ I, right multiplication with Q and right multiplication with (Q−Q1) induce
identical maps. We may therefore assume that Q1 6∈ I. But since (t − α)Q ∈ I,
we obtain −αQ1 + tQ1 − αQ2 + · · · + tQn ∈ I. This gives −αQ1 ∈ I, since this
is the homogeneous part of degree deg(Q?1) of (t − α)Q and I is homogeneous.
Consequently, Q1 ∈ I and this is a contradiction, so it follows that α = 0. Finally,
we have from lemma 3.25 that there exists a unique graded structure on V (0), up
to graded isomorphisms of degree 0 and twist, and this ends the proof.

The second case is that of simple, graded D-modules that are S-torsion free.
From proposition 3.26, we know that there is a bijective correspondence between the
set gr-Simple(D)[S−torsion free] of equivalence classes of simple, graded, S-torsion
free D-modules, and the set gr-Simple(D(T )) of equivalence classes of simple, graded
D(T )-modules. Furthermore, this bijective correspondence is given by M 7→ S−1M .

Let I ⊆ k be a subset of k containing 0, such that the natural, set-theoretic map
I → k/Z is a bijection. From corollary 3.28, we know that the set gr-Simple(D(T ))
is given by {Nα : α ∈ I}, where Nα = D(T )/D(T )(E − α) for all α ∈ I. We also
see that N0 = D(T )/∂D(T ) ∼= T considered as a D(T )-module.

For each α ∈ I∗ = I \ {0}, let us consider the D-module Mα = D/D(E − α).
Since I∗ ⊆ k \ Z, it follows from Dixmier [11], lemma 24 that Mα is a simple D-
module for all α ∈ I∗. Furthermore, let us consider the D-moduleM0 = D/D∂ ∼= A.
It is clear that M0 is a simple D-module, see corollary 2.9. Consequently, we have
that Mα is a simple, graded D-module with S−1Mα = Nα for all α ∈ I.

Corollary 6.3. Let D = A1(k). Then the set gr-Simple(D) of equivalence classes
of simple, graded D-modules is given by {Mα : α ∈ I} ∪ {V (0)}.

2. Graded holonomic D-modules

Let A = k[t] and let D = A1(k). We recall that a D-module M is holonomic if
M = 0 or M 6= 0 and d(M) = 1. This means that M is holonomic if and only if M
is an Artinian D-module. In particular, any holonomic D-module has a composition
series

M = F0 ⊇ F1 ⊇ · · · ⊇ Fn−1 ⊇ Fn = 0,

where n = l(M) it the length of M , and Fi/Fi−1 is a simple D-module for 1 ≤ i ≤ n.
Equivalently, M has a co-filtration of the form

M = Cn → Cn−1 → · · · → C1 → C0 = 0,

where the homomorphism Ci → Ci−1 is surjective with simple kernel for 1 ≤ i ≤ n.
Assume that M is a graded holonomic D-module. Then M is Noetherian and

Artinian, so M satisfies the ACC and DCC for submodules of M . We say that
the graded module M is gr-Noetherian (gr-Artinian) if the set of homogeneous
submodules of M satisfies the ACC (DCC). In this notation, the graded holonomic
D-module M is clearly gr-Noetherian and gr-Artinian, since it is graded, Noetherian
and Artinian. This means that M has a co-filtration

M = Cn → Cn−1 → · · · → C1 → C0 = 0,

such that Ci → Ci−1 is a graded surjection of degree 0 with gr-simple kernel for
1 ≤ i ≤ n. This is clear, since each homogeneous ideal I ⊆ D with I 6= D is either
maximal among the homogeneous ideals, or there is a minimal element among the
homogeneous ideals J with I ⊆ J and I 6= J . From proposition 3.24, any gr-
simple D-module is a simple, graded D-module. So in particular, n is the length
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of the holonomic D-module M , and the filtration corresponding to C is a graded
composition series for M .

Proposition 6.4. Let D = A1(k) and let M be a non-zero, graded, holonomic
D-module of length n. Then there exist a co-filtration of M of the form

M = Cn → Cn−1 → · · · → C1 → C0 = 0,

where Ci → Ci−1 is a graded surjection of degree 0 with a simple, graded kernel for
1 ≤ i ≤ n.

3. Extensions of extensions of simple, graded D-modules

Consider the set gr-Simple(D) = {Mα : α ∈ I} ∪ {V (0)} of equivalence classes
of graded, simple D-modules. It is essential to calculate the extensions between the
simple, graded modules in order to classify the extensions of extensions of simple,
graded D-modules. It will be useful to write M∞ for V (0) and Î for I ∪ {∞}, so
we shall use this notation.

Lemma 6.5. Let α, β ∈ Î. If α = β ∈ I∗ or if α = 0 and β =∞ or if α =∞ and
β = 0, then dimk Ext1

D(Mα,Mβ) = 1. In all other cases, Ext1
D(Mα,Mβ) = 0.

Proof. This is a straight-forward calculation.

For α ∈ I∗, we have a k-linear basis {tn : n ≥ 0} ∪ {∂n : n > 0} for Mα.
Furthermore, we have a k-linear basis {tn : n ≥ 0} for M0 and {∂n : n ≥ 0}
for M∞. In all cases where dimk Ext1

D(Mα,Mβ) = 1, we shall give a derivation
ψ ∈ Derk(D,Homk(Mα,Mβ)) such that the equivalence class of ψ is a k-linear
basis for Ext1

D(Mα,Mβ). Since t, ∂ generate D as a k-algebra, it is enough to give
the endomorphisms ψt and ψ∂ .

Assume that α = β ∈ I∗. Then we choose ψ such that ψt(tn) = 0, ψ∂(∂n) = 0
for all n ≥ 0, and such that ψt(∂n) = ∂n−1, ψ∂(tn) = tn−1 for n > 0. If α = 0 and
β = ∞, we choose ψ such that ψt = 0 and ψ∂(1) = 1, ψ∂(tn) = 0 for n > 0. If
α = ∞ and β = 0, we choose ψ such that ψ∂ = 0 and ψt(1) = 1, ψt(∂n) = 0 for
n > 0.

Let R be any associative, Z-graded k-algebra, and let M,N be Z-graded R-
modules. If R is a Noetherian ring and M is an R-module of finite type, then
ExtnR(M,N) is a Z-graded k-vector space for all n ≥ 0. Let ψ ∈ Derk(Homk(M,N))
represent ξ ∈ Ext1

R(M,N) via Hochschild cohomology. Then ξ is homogeneous of
degree w if and only if ψ(Ri)(Mj) ⊆Mi+j+w for all i, j ∈ Z.

Let R be an associative, Z-graded k-algebra, and let M,N be Z-graded R-
modules. A graded extension of M with N of degree d is a short exact sequence

0→ N → E →M → 0

of graded R-modules, where f : N → E is a graded homomorphism of degree d and
g : E → M is a graded homomorphism of degree 0. A pair of graded extensions
(E, f, g), (E′, f ′, g′) of degree d are equivalent if there exists a graded isomorphism
τ : E → E′ of degree 0, such that τf = f ′ and g = g′τ . We denote by Ext(M,N)d
the set of equivalence classes of graded extensions of M with N of degree d. We
refer to appendix A for comparison with the well-known, non-graded case version.

Proposition 6.6. Let R be an associative, Z-graded k-algebra, and let M,N be Z-
graded left R-modules. Then there is a bijective correspondence between Ext(M,N)d
and Ext1

R(M,N)−d.

Proof. From the non-graded case, we know that E is an extension of M with N
if and only if E = N ⊕M considered as k-vector space, with R-module structure
given by r(n,m) = (rn + ψr(m), rm) for some ψ ∈ Derk(R,Homk(M,N)). Notice
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that E has a graded structure compatible with N → E → M if and only if it is
homogeneous of degree −d in the sense that ψ(Ri)(Mj) ⊆ Mi+j−d for all integers
i, j. We know that the two extensions E,E′ are equivalent via τ : E → E′ if
and only if there is a co-boundary φ such that τ(n,m) = (n + φ(m),m). But if
dτ = ψ−ψ′ with ψ,ψ′ homogeneous of degree −d, then τ is homogeneous of degree
−d as well, in the sense that φ(Mi) ⊆ Mi−d for all integers i. This proves the
claim.

Let α, β ∈ Î. From the calculations of Ext1
D(Mα,Mβ) given above, we see that

any extension ξ ∈ Ext1
D(Mα,Mβ) satisfies ξ = 0 or ξ is homogeneous of some degree

d. Moreover, the latter case only occurs for the following values for α and β:
i) α = β ∈ I∗ with d = 0.

ii) α = 0 and β =∞ with d = 1.
iii) α =∞ and β = 0 with d = −1.
Consequently, any extension of Mα with Mβ is graded. Moreover, the extension is
either split or a graded extension of degree −d, and the latter case only occurs for
the values of α and β mentioned above.

Let M = {M1, . . . ,Mp} be a finite family of graded D-modules. A graded
extension of extensions of the family M is a couple (M,F ) consisting of a graded
D-module M and a filtration C of M of the form

M = Cn → Cn−1 → · · · → C1 → C0 = 0,

where Ci → Ci−1 is a graded surjection of degree 0 for 1 ≤ i ≤ n, and there is
a graded isomorphism ker(Ci → Ci−1) → Mli of degree di for some integers di, li
with 1 ≤ li ≤ p.

Corollary 6.7. Let M be a non-zero, graded, holonomic D-module of length n.
Then there exists a finite subset I(M) ⊆ I and a co-filtration C of M of length
n, such that (M,C) is a graded extension of extensions of {Mα : α ∈ I(M)}.
Moreover, every extension of extensions of a finite subfamily of {Mα : α ∈ Î} of
length n is a non-zero, graded, holonomic D-module.

Proof. The first part follows from proposition 6.4 and the fact that any simple,
graded D-module is equivalent to Mα for some α ∈ Î, up to graded isomorphisms of
degree 0 and twists. For the second part, it is enough to recall that any extension
of Mα with Mβ is graded for all α, β ∈ Î.

It follows from the corollary that in order to classify the graded, holonomic
D-modules it is enough to classify all extensions of extensions of sub-families of the
family {Mα : α ∈ Î} of simple, graded D-modules.

4. Indecomposable, graded D-modules

We say that a D-module M is decomposable if M ∼= N1 ⊕ N2 for some D-
submodules N1, N2 ⊆ M with N1, N2 6= 0. We say that M is indecomposable if it
is not decomposable. In particular, all simple D-modules are indecomposable. It
is well-known that every D-module is a direct sum of indecomposable D-modules,
since D is a Noetherian ring (recall that we only consider D-modules of finite type).

It is therefore of interest to classify the indecomposable D-modules. We shall
do this via the theory of extension of extensions, and the following lemma is useful:

Lemma 6.8. Let R be any ring, and let 0 → N → E → M → 0 be a short exact
sequence of R-modules. If M is decomposable, then E is decomposable as well.

Proof. Assume that we have morphisms f : N → E and g : E → M1 ⊕M2 such
that 0 → N → E → M1 ⊕M2 → 0 is exact. Let Ei = g−1(Mi) for i = 1, 2. Then
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E1, E2 are submodules of E such that E1 +E2 = E and E1 ∩E2 = 0. So the result
follows.

This lemma implies that if (M,C) is an extension of extensions, then M is
indecomposable if and only if Ci is indecomposable for all integers i with 0 ≤ i ≤ n.
This observation has the following consequence:

Proposition 6.9. Let D = A1(k) and let (M,C) be an extension of extensions of
a finite sub-family of the simple, graded D-modules. If M is an indecomposable
D-module, then the short exact sequence

0→ ker(Ci → Ci−1)→ ker(Ci → Ci−2)→ ker(Ci−1 → Ci−2)→ 0

is non-split for 2 ≤ i ≤ n.

Proof. Let us denote the extension corresponding to the above exact sequence by
ξi for 2 ≤ i ≤ n. It is immediately clear that ξ2 6= 0 from the lemma above. So let
m > 2, and assume that ξi 6= 0 for all i < m. If ξm = 0, then it is clear that there
exists a split extension ξ′ of Cm−1 with Km = ker(Cm → Cm−1) compatible with
the extension ξm. So the difference between ξ′ and the given extension

0→ Km → Cm → Cm−1 → 0

is given by an extension of Cm−2 to Km. We see that the simple components of
Cm−1 are either all isomorphic to Mα for some fixed α ∈ I∗ (case I), or alternately
isomorphic to M0 and M∞ (case II): This follows since ξ 6= 0 for all i < m.
We also see that if Ext1

D(N,Km) = 0 for each simple component N of Cm−2, then
Ext1(Cm−2,Km) = 0 as well. But then ξm is a sum of split extensions, and therefore
split. This is a contradiction, so in case I, we must have Km

∼= Mα and in case II we
must have Km

∼= M0 or Km
∼= M∞. In either case, we see that Km is isomorphic

to a simple component of Cm−1. But then we may add the extension of Cm−2 with
Km to the D-module Cm−1 to obtain a new D-module C ′m−1, in such a way that
Cm = Km ⊕ C ′m−1. But this is a contradiction, since Cm is indecomposable. So
ξi 6= 0 for all i by induction on m.

The proposition implies that if M is an indecomposable, graded D-module,
then is an extension of extensions of one of the following types:

• Type I: M = {M1} with M1 = Mα for some α ∈ I∗, and G is given by the
arrows a1, . . . , an−1 from node 1 to node 1 with a1 < a2 < · · · < an−1.
• Type II.A: M = {M1,M2} with M1 = M0 and M2 = M∞, and G is given

by the arrows a1, . . . , an−1 with a1 < · · · < an−1, where ai is an arrow from
node 1 to node 2 for all odd numbers i, and an arrow from node 2 to node
1 for all even numbers i.
• Type II.B: M = {M1,M2} with M1 = M0 and M2 = M∞, and G is given

by the arrows a1, . . . , an−1 with a1 < · · · < an−1, where ai is an arrow from
node 2 to node 1 for all odd numbers i, and ai is an arrow from node 1 to
node 2 for all even numbers i.

Furthermore, we have seen that given an indecomposable, graded D-module M ,
then any co-filtration C on M such that (M,C) is an extension of extensions of
simple, graded D-modules has the property that the short exact sequence

0→ ker(Ci → Ci−1)→ ker(Ci → Ci−2)→ ker(Ci−1 → Ci−2)→ 0

is non-split for 2 ≤ i ≤ n.
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5. Extensions of extensions of type I

Let the family M be given by M = {M1}, with M1 = Mα for some α ∈ I∗.
Let furthermore G be the ordered, directed graph with a single node N = {1}, and
with edges E = {a1, . . . , an−1} for some n ≥ 1, where ai is an edge from node 1 to
node 1 for 1 ≤ i ≤ n− 1 and the total order of E is given by a1 < · · · < an−1. We
want to apply methods from chapter 5 to classify all indecomposable D-modules in
E(M,G).

The k-algebra H = T1 = k[[s11]] is a pro-representing hull of the deformation
functor DefM : a1 → Sets. This is clear, since D is a hereditary ring. We have
to find the versal family MH over H: We know that MH = M⊗̂kH considered as
right H-module. Furthermore, we have that

P (m⊗ 1) = Pm⊗ 1 + ψP (m)⊗ s11 + ∆(P,m)

for all P ∈ D, m ∈M1, where ψ is given as above and ∆(P,m) ∈MHI(H)2. It is
easy to see that ∆(t,m) = ∆(∂,m) = 0 defines a versal deformation MH if and only
if ψ∂ψt−ψtψ∂ = 0, since [∂, t] = 1 is the only relation in D. But ψ∂ψt = ψtψ∂ = 0
in Endk(M1), so it follows that the left R-module structure on MH is given by

P (m⊗ 1) = Pm⊗ 1 + ψP (m)⊗ s11

for P = t, ∂ and m ∈M1.
Let k[G] be the k-algebra of the ordered, directed graph G. We see that we

have k[G] = k[x1, . . . , xn−1], where xi are generators with the relations xixj = 0
if i ≥ j. However, we shall consider the k-algebra k[G′] = k[x]/(xn) in a1 and
the affine, algebraic variety X(M,G′) = Mor(H, k[G′]) ⊆ Mor(H, k[G]). These
objects are obtained when we consider the ordered, directed graph G′ with relations
ai = ai−1 for 1 ≤ i ≤ n − 1. Let A(M,G′) be the affine coordinate ring of
X(M,G′) = An−1. Then A(M,G′) = k[z1, . . . , zn−1], where zi corresponds to the
the morphism φi : H → k[G′] given by φi(s11) = xi for 1 ≤ i ≤ n−1. We construct
a family M(M,G′) of deformations of M to k[G′] parametrized by A(M,G′), in a
manner similar to the construction of the family M(M,G) for G.

We observe that the family M(M,G′) is versal in the sense that it contains
all indecomposable isomorphism classes of E(M,G) as fibers: It is clear that it
contains all indecomposable isomorphism classes of E(M,G′) as fibers. But we
have that dimk Ext1

D(Mα,Mα) = 1, and from proposition 6.9, the extensions

0→ ker(Ci → Ci−1)→ ker(Ci → Ci−2)→ ker(Ci−1 → Ci−2)→ 0

are non-split for 2 ≤ i ≤ n, since M is indecomposable. So the indecomposable
isomorphism classes of E(M,G) and E(M,G′) coincide.

Let us proceed to find the versal family M(M,G′) of deformations of M to
k[G′] parametrized by A(M,G′): Clearly, we have

M(M,G′) = (M1 ⊗k k[G′])⊗k A(M,G′),

considered as a right k[G′]⊗k A(M,G′)-module. Furthermore, we see that the left
D-module structure is given by the formula

P (m⊗ 1⊗ 1) = (Pm)⊗ 1⊗ 1 +
n−1∑
i=1

ψP (m)⊗ xi ⊗ zi
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for P = t, ∂ and m ∈M1. More explicitly, this gives

P (m⊗ xn−1 ⊗ 1) = (Pm)⊗ xn−1 ⊗ 1

P (m⊗ xn−2 ⊗ 1) = (Pm)⊗ xn−2 ⊗ 1 + ψP (m)⊗ xn−1 ⊗ z1

P (m⊗ xn−3 ⊗ 1) = (Pm)⊗ xn−3 ⊗ 1 + ψP (m)⊗ xn−2 ⊗ z1 + ψP (m)⊗ xn−1 ⊗ z2

...

P (m⊗ x⊗ 1) = (Pm)⊗ x⊗ 1 +
n−2∑
i=1

ψP (m)⊗ xi+1 ⊗ zi

P (m⊗ 1⊗ 1) = (Pm)⊗ 1⊗ 1 +
n−1∑
i=1

ψP (m)⊗ xi ⊗ zi

for P = t, ∂ and m ∈M1.
Let m1 = 1 ⊗ 1 ⊗ 1 ∈ M(M,G′). Then we see from the equations above that

M(M,G′) is generated by m1 considered as a D-k[G′]⊗k A(M,G′) bimodule. Let
us write D̃ = D ⊗k (k[G′] ⊗k A(M,G′))op. Then we may consider M(M,G′) as a
left D̃-module with the following free resolution:

0←M(M,G′)← D̃
C← D̃ ← 0,

where C denotes right multiplication with the element C ∈ D̃ given by

C = (E − α)⊗ (1⊗ 1)op − 1⊗ (
n−1∑
i=1

xi ⊗ zi)op.

We know that there is a Kodaira-Spencer map for the family M(M,G′), which
we denote

g : Derk(A(M,G′)→ Ext1
D̃

(M(M,G′),M(M,G′)).

We write V for the kernel of this map, and it is well-known that the maximal
integral manifolds of X(M,G′) = An−1 with respect to V consist of points over
which the fibers are isomorphic considered as D-k[G′] bimodules. A computation
of the Kodaira-Spencer kernel V in this case gives the k-vector space

V =< z1∂1 + · · ·+ zn−1∂n−1, z1∂2 + · · ·+ zn−2∂n−1, . . . , z1∂n−1 >,

where ∂i = ∂/∂zi for 1 ≤ i ≤ n−1. In particular, we see that all points in X(M,G′)
with z1 6= 0 have fibers which are isomorphic considered as D-k[G′] bimodules.

Corollary 6.10. Let D = A1(k). For each integer n ≥ 1, there is a unique graded,
holonomic, indecomposable D-module M which is an extension of extensions of type
I, up to graded isomorphism of degree 0 and twists. Moreover, M = D/D(E − α)n

is a representative of this equivalence class.

Proof. From the computation of the Kodaira-Spencer kernel V above, we see that
there can be at most one equivalence class of the above mentioned type for each
n ≥ 1. But it is clear that the D-module M = D/D(E−α)n is a graded, holonomic
D-module for all n. Furthermore, we have an exact sequence

0→ D(E − α)i−1/D(E − α)i → D/D(E − α)i → D/D(E − α)i−1 → 0

for 1 ≤ i ≤ n, and D(E − α)i−1/D(E − α)i ∼= Mα for all i. So it follows that
M is an extension of extensions of type I. Finally, a direct computation shows
that EndD(M) = k[E − α]/(E − α)n is a local ring, so M is an indecomposable
D-module.
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6. Extensions of extensions of type II

Let the family M be given by M = {M1,M2}, with M1 = M0 and M2 = M∞.
Let furthermore G be the ordered, directed graph with nodes N = {1, 2}, and with
edges E = {a1, . . . , an−1} for some n ≥ 1, with a1 < · · · < an−1. For type II.A, we
have that ai is an edge from node 1 to node 2 for all odd integers i with 1 ≤ i ≤ n−1
and an edge from node 2 to node 1 for all even integers i with 1 ≤ i ≤ n − 1. For
type II.B, we have that ai is an edge from node 2 to node 1 for all odd integers i
with 1 ≤ i ≤ n− 1 and an edge from node 1 to node 2 for all even integers i with
1 ≤ i ≤ n− 1.

Assume that n = 2m is even. Then MA = D/D(t∂)m and MB = D/D(∂t)m

are graded, holonomic D-modules which are extensions of extensions of type II.A
and II.B respectively. Similarly, if n = 2m + 1 is odd, then MA = D/D∂(t∂)m

and MB = D/Dt(∂t)m are graded, holonomic D-modules which are extensions of
extensions of type II.A and II.B respectively.

Lemma 6.11. Let n ≥ 1 be a positive integer, and let MA,MB be the graded,
holonomic D-modules given above. Then EndD(MA),EndD(MB) are local rings.
In particular, MA and MB are indecomposable D-modules.

Proof. A direct computation shows that if n = 2m is even, then the endomor-
phism rings are EndD(MA) = k[E]/Em and EndD(MB) = k[E + 1]/(E + 1)m.
Similarly, the endomorphism rings are given by EndD(MA) = k[E]/Em+1 and
EndD(MB) = k[E + 1]/(E + 1)m+1 when n = 2m+ 1 is odd. Since all these rings
are commutative, local k-algebras, the result follows.

It turns out that it is difficult to calculate the subset of indecomposable isomor-
phism classes in E(M,G) for type II extension of extensions using the techniques
from section 5. We shall therefore use a more direct computation to obtain this
subset. The key to the new approach, is the following computation of Ext-groups:

Lemma 6.12. We have dimk Ext1
D(MA,M0) = dimk Ext1

D(MB ,M∞) = 1 when
n = 2m is even, and we have dimk Ext1

D(MA,M∞) = dimk Ext1
D(MB ,M0) = 1

when n = 2m+ 1 is odd.

Proof. This follows from a straight-forward calculation.

Corollary 6.13. Let D = A1(k). For each integer n ≥ 1, MA and MB are the
unique graded, holonomic, indecomposable D-modules which are extensions of ex-
tensions of type II.A and type II.B, up to graded isomorphism of degree 0 and
twists.

Proof. It is clear that the D-modules MA and MB given above are graded, holo-
nomic and indecomposable D-modules which are extensions of extensions of type
II.A and type II.B. Let M be one of these modules, and let C be a co-filtration of
type II. Then Ci is an extension of Ci−1 with Ki = ker(Ci → Ci−1) for all i ≥ 2.
But from lemma 6.12, we have Ext1

D(Ki, Ci−1) ∼= k, and since M is indecompos-
able, Ci is not a trivial extension. But this means that Ci is the unique possible
extension of Ci−1 with Ki, for all i ≥ 2, up to isomorphism of D-modules. By
induction, the uniqueness of MA and MB follows.



CHAPTER 7

Graded holonomic D-modules

In chapter 6, we have classified all the graded, holonomic, indecomposable
modules over the Weyl-algebra D = A1(k). We recall that we have fixed some
subset I ⊆ k such that I contains 0 and the natural map I → k/Z is a bijection of
sets. Furthermore, we write I∗ = I \ {0}. Using this notation, we may summarize
the results from chapter 6 in the following theorem:

Theorem 7.1. Let D = A1(k) and let n ≥ 1 be a positive integer. The set of
graded, holonomic, indecomposable D-modules of length n, up to graded isomor-
phisms of degree 0 and twists, are given by

{D/D(E − α)n : α ∈ I∗} ∪ {D/DEm, D/D(∂t)m}
when n = 2m is even, and by

{D/D(E − α)n : α ∈ I∗} ∪ {D/D∂Em, D/Dt(∂t)m}
when n = 2m+ 1 is odd.

Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding monomial
curve, and let D = D(A) be the ring of differential operators on A. From corollary
2.9, we know that D is Morita equivalent with the Weyl algebra A1(k). Further-
more, it is clear that the Morita equivalence preserves decompositions of modules,
so the property of being indecomposable is a Morita equivalent property.

Let us denote by M(n, α) the D-module corresponding to D/D(E−α)n for all
α ∈ I∗, n ≥ 1. Let us furthermore denote by MA(n) the D-module corresponding
to D/DEm when n = 2m is even and to D/D∂Em when n = 2m + 1 is odd, and
by MB(n) the D-module corresponding to D/D(∂t)m when n = 2m is even and to
D/Dt(∂t)m when n = 2m+ 1 is odd.

Theorem 7.2. Let Γ be a numerical semigroup, let A = k[Γ] be the corresponding
monomial curve, and let D = D(A) be the ring of differential operators on A.
The set of graded, holonomic, indecomposable D-modules of length n, up to graded
isomorphisms of degree 0 and twists, are given by

{M(α, n) : α ∈ I∗} ∪ {MA(n),MB(n)}.
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APPENDIX A

The Ext groups and Hochschild cohomology

Let R be an associative k-algebra, and let M,N be left R-modules. In this
appendix, we recall several different descriptions of the k-vector space ExtnR(M,N)
for n ≥ 0. In particular, we discuss the description given by Hochschild cohomology
of R with values in the R-R bimodule Homk(M,N). We also define the cup product
on Ext groups.

1. The Yoneda description of Ext groups

Let M,N be left R-modules, and fix free resolutions (L∗, d∗) of M and (L′∗, d
′
∗)

of N . We shall write the differentials di : Li+1 → Li and d′i : L′i+1 → L′i. Further-
more, we denote the augmentation morphisms by ρ : L0 →M and ρ′ : L′0 → N .

For integers n ≥ 0, ExtnR(M,N) is defined to be the n’th cohomology group of
the complex HomR(L∗, N),

ExtnR(M,N) = Hn(HomR(L,N)).

Notice that in general, this Abelian group does not have a left R-module structure,
but only a left C(R)-module structure, where C(R) is the centre of R. In particular,
if R is commutative, then ExtnR(M,N) has the structure of an R-module for n ≥ 0,
and if R is a k-algebra, then ExtR(M) has the structure of a k-vector space.

We denote by Hom∗(L∗, L′∗) the Yoneda complex, given in the following way:
For each integer n ≥ 0, let Homn(L∗, L′∗) be the left R-module

Homn(L∗, L′∗) = qi HomR(Li+n, L′i),

where HomR denotes the left R-linear maps. We write φ = (φi) for an element
φ ∈ Homn(L∗, L′∗), where φi ∈ HomR(Li+n, L′i) for all i ≥ 0, and we define the
map dn : Homn(L∗, L′∗)→ Homn+1(L∗, L′∗) by the formula

dn(φ)i = φidn+i + (−1)n+1d′iφi+1

for i ≥ 0. It is then easy to check that this map is a well-defined differential,
and it is a morphism of Abelian groups. We shall write Hn(Hom(L∗, L′∗)) for
the cohomology groups of the Yoneda complex. Since the differential d = dn is
left C(R)-linear, these cohomology groups have a natural structure as left C(R)-
modules.

Lemma A.1. For all integers n ≥ 0, we have a canonical isomorphism

Hn(Hom(L∗, L′∗)) ∼= ExtnR(M,N)

Proof. There is a natural map fn : Homn(L∗, L′∗) → HomR(Ln, N), given by
f(φ) = ρ′φ0, where φ = (φi) ∈ Homn(L∗, L′∗). It is easy to see that these maps
are compatible with the differentials, and a small calculation show that fn induces
an isomorphism on cohomology Hn(Hom(L∗, L′∗)) → ExtnR(M,N) for all integers
n ≥ 0.

Let f : L → L′ be a left R-linear map between finite, free left R-modules.
Then, we shall always represent this map f as right multiplication by a matrix F
over R. This is done by choosing bases for L,L′, and by letting the i’th row of F
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represent the image of the i’th basis vector of L under f . Notice that if g : L′ → L′′

is another map of the same kind, then gf is represented by the matrix FG.

2. Definition of Hochschild cohomology

Let R be an associative k-algebra, and let Q be an R-R bimodule. We define
HCn(R,Q) = Homk(⊗nkR,Q) for all n ≥ 0. To simplify notation, we shall write
ψ(r1, . . . , rn) in place of ψ(r1 ⊗ · · · ⊗ rn) for ψ ∈ HCn(R,Q), r1, . . . , rn ∈ R.
Furthermore, we define maps dn : HCn(R,Q)→ HCn+1(R,Q) by the formula

(5) dn(ψ)(r0, . . . , rn) = r0 ψ(r1, . . . , rn) +
n∑
i=1

(−1)iψ(r0, . . . , ri−1ri, . . . , rn)

+ (−1)n+1ψ(r0, . . . , rn−1) rn

for all ψ ∈ HCn(R,Q), r0, . . . , rn ∈ R. It is clear that the maps dn are k-linear
maps.

Lemma A.2. HC∗(R,Q) is a complex of k-vector spaces.

Proof. Let ψ ∈ HCn(R,Q). Then ψ′ = dn(ψ) is a sum of n + 1 summands,
and we denote these by ψ′0, . . . , ψ

′
n, in the order they appear in formula 5. Let

ψ′′ = dn+1ψ′ = dn+1dnψ. Each dn+1ψ′i for 0 ≤ i ≤ n is a sum of n+ 2 summands,
and we denote these by ψ′′ij for 0 ≤ j ≤ n+ 1 in the order they appear in formula 5.
A straight-forward calculation shows that we have ψ′′i,j + ψ′′j,i+1 = 0 for all indices
i, j with 0 ≤ j ≤ n+ 2, j ≤ i ≤ n+ 1. Since ψ′′ =

∑
ψ′′ij , it follows that ψ′′ = 0 in

HCn+2(R,Q). Consequently, HC∗(R,Q) is a complex of k-vector spaces.

We denote the corresponding cohomology group HHn(R,Q) the n’th Hochschild
cohomology group of R with values in Q. Explicitly, we define HHn(R,Q) to be
given by

HHn(R,Q) = Hn(HC∗(R,Q)) = ker(dn)/ Im(dn−1)

for all n ≥ 0. In particular, the cohomology groups HHn(R,Q) have a natural
structure as k-vector spaces.

We also notice that an element ψ ∈ HC1(R,Q) is a 1-cocycle if and only if
ψ(rs) = rψ(s) + ψ(r)s for all r, s ∈ R. So we have ker(d1) = Derk(R,Q). We say
that a derivation ψ ∈ Derk(R,Q) is trivial if there is a q ∈ Q such that ψ is of the
form ψ(r) = rq− qr for all r ∈ R. Clearly, the set of trivial derivations is the image
Im(d0).

3. Hochschild cohomology in terms of Ext groups

Let M,N be left R-modules. Then Q = Homk(M,N) is an R-R bimodule in a
natural way: For any r ∈ R, let Lr : M → M denote left multiplication on M by
r, and L′r : N → N denote left multiplication on N by r. The bimodule structure
is given by rφ = L′rφ, φr = φLr for r ∈ R, φ ∈ Homk(M,N). We shall consider
the Hochschild cohomology of R with values in Q = Homk(M,N).

By definition, we have that HH0(R,Q) = ker(d0), and furthermore it is clear
that ker(d0) = HomR(M,N) when Q = Homk(M,N). So we have a natural isomor-
phism of k-vector spaces Ext0

R(M,N) ∼= HH0(R,Q). Notice that since k ⊆ C(R),
ExtnR(M,N) has a natural k-vector space structure for all n ≥ 0. We remark that
it is possible to extend the above isomorphism to the higher cohomology groups:

Proposition A.3. Let R be an associative k-algebra, M,N be left R-modules and
Homk(M,N) be the natural R-R bimodule. Then there exists a natural isomorphism
of k-vector spaces

σn : ExtnR(M,N)→ HHn(R,Homk(M,N))



4. EXTENSIONS AND HOCHSCHILD COHOMOLOGY 85

for all n ≥ 0.

Proof. From Weibel [33], lemma 9.1.9, we have a natural isomorphism of k-vector
spaces between the Hochschild cohomology group HHn(R,Homk(M,N)) and the
relative Ext group ExtnR/k(M,N) for n ≥ 0. But since k is a field, there is a
canonical isomorphism between the relative and absolute Ext groups, see theorem
8.7.10 in Weibel [33].

We shall give an explicit identification of k-vector spaces between Ext1
R(M,N)

and HH1(R,Homk(M,N)): Let (L∗, d∗) be a free resolution of M , with augmen-
tation morphism ρ : L0 → M , and let τ : M → L0 be a k-linear section of ρ.
For any 1-cocycle φ ∈ HomR(L1, N), let ψ = ψ(φ) ∈ Derk(R,Homk(M,N)) be the
following derivation: For any r ∈ R, m ∈ M , let x = x(r,m) ∈ L1 be such that
d0(x) = rτ(m)− τ(rm). Notice that such an x exists, and is uniquely defined mod-
ulo the image Im d1. We define ψ by the equation ψ(r)(m) = φ(x) with x = x(r,m).
Since φ is a cocycle, ψ is a well-defined homomorphism in Homk(R,Homk(M,N)),
and a straight-forward calculation shows that φ is a derivation.

Lemma A.4. Assume that Ext1
R(M,N) is a finite dimensional k-vector space.

Then the assignment φ 7→ ψ(φ) defined in the above paragraph induces the iso-
morphism σ1 : Ext1

R(M,N)→ HH1(R,Homk(M,N)).

Proof. Assume that φ is a co-boundary, so φ = d0(φ′), where φ′ ∈ HomR(L0, N).
Then ψ = d0(φ′), where ψ′ = φ′τ ∈ Homk(M,N), so φ is a trivial derivation. Con-
sequently, the assignment induces a well-defined map of k-linear spaces. This map
is furthermore injective: Assume that ψ is a trivial derivation, so ψ = d0(ψ′), where
ψ′ ∈ Homk(M,N). Then, we can construct an R-linear map φ′ ∈ HomR(L0, N) in
the following way: Choose a basis for L0, and for each basis vector y ∈ L0, choose
y′ ∈ L1 such that d0(y′) = y − ψ′ρ(y). Then we define φ′(y) = ψ′ρ(y) + φ(y′) for
each basis vector y ∈ L0. We obtain a morphism φ′ ∈ HomR(L0, N) by R-linear
extension, and d0(φ′) = φ, so φ is a co-boundary. But since dimk Ext1

R(M,N) is
finite, it equals dimk HH1(R,Homk(M,N)) by proposition A.3. This shows that
the k-linear map defined above is an isomorphism, and it coincides with σ1 by
naturality.

4. Extensions and Hochschild cohomology

Let R be an associative k-algebra, and let M,N be left R-modules. An exten-
sion of M with N is an exact sequence

0→ N
f→ E

g→M → 0.

Furthermore, we say that two extensions E,E′ of M with N are equivalent if there
is an isomorphism of left R-modules φ : E → E′ such that φf = f ′ and g′φ = g.
The set of equivalence classes of extensions of M with N is denoted Ext(M,N).

Proposition A.5. Let M,N be left R-modules. Then, there is a bijective corre-
spondence between the set Ext(M,N) of extensions of M with N and the Hochschild
cohomology HH1(R,Homk(M,N)). In particular, the set Ext(M,N) is isomorphic
to Ext1

R(M,N), and carries a natural structure of a k-vector space.

Proof. Let 0 → N → E → M → 0 be an extension in Ext(M,N). Then E has
an underlying structure as a k-vector space, and E ∼= N ⊕M as k-vector spaces.
We may therefore assume that E = N ⊕M over k, with some left multiplication
by R given, and that the maps f : N → E and g : E → M are the natural ones.
Since f, g are R-linear maps, we have that r(n,m) = (rn + ψ(r,m), rm) for all
r ∈ R, n ∈ N, m ∈ M for some map ψ : R ×M → N . Distributivity gives that
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ψ is k-linear in R and M , and associativity gives that ψ is a derivation. So there
is a bijection between extensions E and derivations ψ ∈ Derk(R,Homk(M,N)).
We claim that two extensions E,E′ are equivalent if and only if the corresponding
derivations ψ,ψ′ represent the same class in HH1(R,Homk(M,N)): Assume that
φ : E → E′ is an equivalence of extensions. Then φ : N ⊕M → N ⊕M , and φ has
the form φ(n,m) = (n+γ(m),m) for all n ∈ N, m ∈M for some map γ : M → N .
This follows, since φ is an equivalence of extensions. Clearly, γ is k-linear since φ
is, and the R-linearity of φ is equivalent to the equation

rγ(m) + ψ′r(m) = γ(rm) + ψr(m)

for all r ∈ R, m ∈ M . So φ is R-linear if and only if d0(γ) = ψ − ψ′. The inverse
of φ is easily obtained, it is given by (n,m) 7→ (n− γ(m),m), so this proves that E
and E′ are equivalent extensions if and only if the corresponding derivations differ
by a trivial derivation.

5. Cup products on Ext groups

Let R be an associative k-algebra, and let M,N,P be left R-modules. There
is a uniquely defined cup product on Ext groups

c : Ext1
R(N,P )⊗k Ext1

R(M,N)→ Ext2
R(M,P ),

which is a k-linear map. We shall write ξ ∪ η for the cup product c(ξ ⊗ η), when
ξ ∈ Ext1

R(N,P ), η ∈ Ext1
R(M,N). We shall recall two different ways of computing

this cup product, using the Yoneda complex and the Hochschild complex:
Let us first assume that φ(ξ) ∈ Hom1(L′∗, L

′′
∗) is a representative of ξ and

that φ(η) ∈ Hom1(L∗, L′∗) is a representative of η in the corresponding Yoneda
complexes, with L∗, L

′
∗, L
′′
∗ free resolutions of M,N,P . Then φ(ξ)i : L′i+1 → L′′i

and φ(η)i : Li+1 → L′i for i ≥ 0. Let φ′ ∈ Hom2(L∗, L′′∗) be given by the formula

φ′i = φ(ξ)i ◦ φ(η)i+1

for i ≥ 0. A straight-forward calculation shows that φ′ is a 2-cocycle, since
φ(ξ), φ(η) are 1-cocycles. Moreover, the cohomology class of φ′ in H2(Hom(L∗, L′′∗))
is independent upon the choice of representative φ(ξ) in H1(Hom(L′∗, L

′′
∗)) and of

representative φ(η) in H1(Hom(L∗, L′∗)). So the map φ(ξ) ⊗ φ(η) 7→ φ′ induces a
k-linear map on cohomology, and this is the cup product.

Assume that M,N,P have free resolutions L∗, L′∗, L′′∗ such that Li, L′i, L
′′
i are

finite free R-modules for all i ≥ 0. Then we may choose a finite basis for each of
these finite free R-modules, and identify each φ(ξ)i with a matrix Ai, and each φ(η)i
with a matrix Bi. We recall that this identification is given by matrix multiplication
from the right. Using this identification, we see that each φ′i is identified with a
matrix Ci = Bi+1Ai.

Secondly, let us assume that ψ(ξ) ∈ Derk(R,Homk(N,P ) is a representative of
ξ, and that ψ(η) ∈ Derk(R,Homk(M,N)) is a representative of η in the Hochschild
complex. We define ψ′ ∈ Homk(R,Homk(M,P )) to be given by the formula

ψ′(r ⊗ s) = ψ(ξ)(r) ◦ ψ(η)(s)

for all r, s ∈ R. A straight-forward calculation shows that ψ′ is a derivation, since
ψ(ξ), ψ(η) are derivations. Furthermore, we see that the cohomology class of ψ′

in HH2(R,Homk(M,P )) is independent upon the choice of representative ψ(ξ) in
HH1(R,Homk(N,P )) and of representative ψ(η) in HH1(R,Homk(M,N)). So the
map ψ(ξ)⊗ ψ(η) 7→ ψ′ induces a k-linear map on cohomology, and this is the cup
product.
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