Problem Sheet 1 DRE 7007 Mathematics

Problems

1. Compute all eigenvalues and eigenvectors for the following matrices:
(a) $\quad A=\left(\begin{array}{ll}2 & -3 \\ 7 & -8\end{array}\right)$
(b) $\quad A=\left(\begin{array}{ccc}1 & 3 & 0 \\ 2 & 0 & 0 \\ 1 & -1 & 2\end{array}\right)$
(c) $\quad A=\left(\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right)$
2. For each of the matrices in Exercise 1, use the eigenvalues and eigenvectors to answer the following questions:
a) Compute $\operatorname{det}(A)$ and $\mathrm{rk}(A)$.
b) Determine if A is positive (semi)definite, negative (semi)definite or indefinite.
c) Is A diagonalizable? If so, find an invertible matrix P and a diagonal matrix D such that $A=P D P^{-1}$.
3. Determine if the matrices are positive (semi)definite, negative (semi)definite or indefinite:

$$
\text { (a) }\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 4 & 5 \\
0 & 5 & 8
\end{array}\right) \quad \text { (b) }\left(\begin{array}{cccc}
1 & -2 & -1 & 1 \\
-2 & 1 & 1 & 2 \\
-1 & 1 & -1 & -3 \\
1 & 2 & -3 & 0
\end{array}\right)
$$

4. Write the following dynamical system (in discrete time) in matrix form:

$$
\begin{aligned}
& x_{t+1}=0.75 x_{t}+0.35 y_{t} \\
& y_{t+1}=0.25 x_{t}+0.65 y_{t}
\end{aligned}
$$

We assume that the initial state $\left(x_{0}, y_{0}\right)$ satisfies $x_{0}+y_{0}=1$. Does the system tend towards an equibrium in the long run (as $t \rightarrow \infty$)? If so, what is the equilibrium state?

Keep answers as short and to the point as possible. Answers must be justified.

