Problem Sheet 2 DRE 7007 Mathematics

Problems

1. Let $S=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$, and let $T=\left\{(x, y) \in \mathbb{R}^{2}: x y=1\right\}$. Sketch the regions S and T in the plane, and find the boundaries ∂S and ∂T. For each of the regions, determine if it is open, closed, bounded, compact.
2. Consider the sequence given by $x_{n}=\frac{n^{2}+1}{n}$. Does the sequence have a limit? Is it bounded?
3. Let \mathbb{R}^{n} be the n-dimensional Euclidean space with the Euclidean norm. Show that the Cauchy-Schwarz inequality implies that the triangle inequality

$$
\|\mathbf{x}+\mathbf{y}\| \leq\|\mathbf{x}\|+\|\mathbf{y}\|
$$

holds for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{n}$.
4. Let $I=[0,1]$, and consider the vector space $C(I, \mathbb{R})$ of continuous functions on I. Show that

$$
f \cdot g=\int_{0}^{1} f(t) g(t) \mathrm{d} t
$$

defines an inner product on $C(I, \mathbb{R})$, and compute $f \cdot g$ when $f(t)=t^{2}$ and $g(t)=t^{3}$. What is $d(f, g)$ when d is the metric induced by this inner product?
5. Let $I=[0,1]$, and consider the vector space $C(I, \mathbb{R})$ of continuous functions on I. The formula

$$
\|f\|=\sup _{t \in[0,1]}|f(t)|
$$

defines a norm on $C(I, \mathbb{R})$, called the sup norm. Use the sup norm to compute $d(f, g)$ when $f(t)=t^{2}$ and $g(t)=t^{3}$.

6 (Difficult). Let $I=[0,1]$, and let f_{n} be the function in $C(I, \mathbb{R})$ defined by $f_{n}=t^{n}$. When $C(I, \mathbb{R})$ has the sup norm, is the sequence $\left(f_{n}\right)$ a Cauchy sequence? Hint: Compute $d\left(f_{n}, f_{n+1}\right)$.

Keep answers as short and to the point as possible. Answers must be justified.

