Problem Sheet 3 DRE 7007 Mathematics

Problems

1. We consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}x \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

Show that f is continuous at $x=0$. Is f differentiable at $x=0$? Is f a C^{1} function? What about the function $g: \mathbb{R} \rightarrow \mathbb{R}$ given by

$$
g(x)= \begin{cases}x^{2} \sin (1 / x), & x \neq 0 \\ 0, & x=0\end{cases}
$$

2. For each of the functions, compute the Hessian matrix at the given point:
a) $f(x, y)=x^{2}+\sqrt{y}$ at $(x, y)=(1,1)$
b) $f(x, y, z)=\sqrt{x}+\sqrt{y}+\sqrt{z}$ at $(x, y, z)=(2,2,2)$
c) $f(x, y, z)=x y+y z+x z$ at $(x, y, z)=(1,1,1)$
3. Determine the definiteness of the Hessian matrices in Problem 2
4. For each of the functions, compute the Hessian matrix at a general point:
a) $f(x, y)=e^{x y}-1$
b) $f(x, y, z)=x y z$
5. Classify the points where f is positive (semi)definite, negative (semi)definite and indefinite for each of the functions in Problem4

6 (Difficult). We consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

Show that f is a C^{1} function, and compute its Hessian matrix. Is it a C^{2} function?
Keep answers as short and to the point as possible. Answers must be justified.

