Problem Sheet 4 DRE 7007 Mathematics

BI Norwegian Business School

Problems

2

1. Show that the open ball $B(p,r) \subseteq \mathbb{R}^n$ is convex for any point $p \in \mathbb{R}^n$ and every radius r > 0.

2. Determine if the functions are convex or concave:

a) $f(x,y) = e^{xy} - 1$ b) f(x,y,z) = xyzc) $f(x,y,z) = \frac{1}{xyz}$

3. The Cobb-Douglas function $f: D \to \mathbb{R}$ defined on $D = \{(x, y) \in \mathbb{R}^2 : x, y \ge 0\}$ is given by

$$f(x,y) = Cx^a y^b$$

with a, b, C > 0. Compute the Hessian of f, and determine when it is convex and when it is concave.

4. Prove that the set $D = \{(x, y) \in \mathbb{R}^2 : x^2y^3 \ge 1, x > 0, y > 0\}$ is a convex set. Find the point in *D* closest to (0, 0), and use this to find a hyperplane that separates *D* and the point (0, 0).

Keep answers as short and to the point as possible. Answers must be justified.