Problem Sheet 4 DRE 7007 Mathematics

Problems

1. Show that the open ball $B(p, r) \subseteq \mathbb{R}^{n}$ is convex for any point $p \in \mathbb{R}^{n}$ and every radius $r>0$.
2. Determine if the functions are convex or concave:
a) $f(x, y)=e^{x y}-1$
b) $f(x, y, z)=x y z$
c) $f(x, y, z)=\frac{1}{x y z}$
3. The Cobb-Douglas function $f: D \rightarrow \mathbb{R}$ defined on $D=\left\{(x, y) \in \mathbb{R}^{2}: x, y \geq 0\right\}$ is given by

$$
f(x, y)=C x^{a} y^{b}
$$

with $a, b, C>0$. Compute the Hessian of f, and determine when it is convex and when it is concave.
4. Prove that the set $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2} y^{3} \geq 1, x>0, y>0\right\}$ is a convex set. Find the point in D closest to $(0,0)$, and use this to find a hyperplane that separates D and the point $(0,0)$.

Keep answers as short and to the point as possible. Answers must be justified.

