Problem Sheet 5 DRE 7007 Mathematics

BI Norwegian Business School

Problems

1. Find all the critical points of the function $f(x,y) = x^4 + 2x^2y^2 + y^4 - x^2 - y^2$ defined on $D = \mathbb{R}^2$, and classify the critical points as local maxima, local minima and saddle points. Does *f* have a global maximum or minimum on *D*?

2. Consider the function $f: D \to \mathbb{R}$, defined by $f(x,y) = \ln(1 - x^2 - y^2)$ on the open set $D = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$. Is f concave? Is it quasi-concave? Find max f(x,y) when $(x,y) \in D$.

3. Consider the function $f : \mathbb{R}^2 \to \mathbb{R}$, defined by $f(x, y) = 3x^4 + 3x^2y - y^3$. Find all the critical points of *f* and classify their type. Is there a global maximum or a global minimum for *f*?

Keep answers as short and to the point as possible. Answers must be justified.

2