

Written examination:	DRE 70171	Mathematic	s, Ph.D.
Examination date:	17.09.2014	09:00 - 12:00	Total no. of pages: 2
Permitted examination	A bilingual dictionary and BI-approved calculator TEXAS		
support material:	INSTRUMENTS BA II Plus		
Answer sheets:	Squares		
	Counts 100%	of DRE 7017	The subquestions have equal weight
Ordinary exam			Responsible department: Economics

QUESTION 1.

We consider the system of linear differential equations given by

$$\dot{x} = 7x + 4y + 1$$
$$\dot{y} = 4x + y - 2$$

- (a) Find the steady state $(\overline{x}, \overline{y})$.
- (b) Rewrite the system in the form $\mathbf{z}' = A\mathbf{z}$ and use this to solve the system.
- (c) Find all initial states (x_0, y_0) such that $(x, y) \to (\overline{x}, \overline{y})$ when $t \to \infty$.

QUESTION 2.

We consider the function $f(x, y, z, w) = x^2 + y^2 + z^2 + w^2 + xw - yz$ defined on \mathbb{R}^4 .

- (a) If f convex? Is it concave?
- (b) Find the global maximum and minimum values of f, if they exist.

QUESTION 3.

For positive constants a, b, T > 0, we consider the optimal control problem

$$\max \int_0^T \ln(ax - bu) \, \mathrm{d}t \quad \text{subject to} \quad \begin{cases} x(0) = 1\\ x(T) = \frac{1}{2} e^{aT/b} \\ x' = u\\ u \in U \end{cases}$$

with control region $U = \mathbb{R}$.

- (a) Show that the function $(x, u) \mapsto \ln(ax bu)$ is concave.
- (b) Solve the optimal control problem.

QUESTION 4.

We consider the functions $f_n(x) = x^n/n$ for n = 1, 2, 3, ... in the function space V = C([0, 1]) of continuous functions on the unit interval [0, 1]. We equip V with the sup norm

$$||f|| = \sup_{x \in [0,1]} |f(x)|$$

and the corresponding metric d(f,g) = ||f - g|| for $f, g \in V$.

- (a) Compute $||f_1||$, $||f_2||$ and $d(f_1, f_2)$.
- (b) Compute $d(f_n, f_{n+k})$.
- (c) Is (f_n) a Cauchy sequence in V? Find the limit of the sequence, if it exists.