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Question 1.

We compute the inner product, given by the integral

f · g =

∫ 1

0
ta+b dt =

[
1

a+ b+ 1
ta+b+1

]1
0

=
1

a+ b+ 1

Question 2.

We have that f ′x = 2x +
√

12 z, f ′y = 4y, and f ′z = 6z +
√

12x, and the stationary points of f
are given by the first order conditions

2x+
√

12 z = 0, 4y = 0, 6z +
√

12x = 0

This gives x = −
√

3z, y = 0, and that z is free, and (x, y, z) = (−
√

3 t, 0, t) for t ∈ R are
therefore the stationary points of f . The Hessian matrix of f is given by

H(f) =

 2 0
√

12
0 4 0√
12 0 6


and we compute its principal minors:

∆1 : 2, 4, 6 > 0,

∆2 : 8, 0, 24 ≥ 0,

∆3 : 0

This means that f is convex, and the stationary points (x, y, z) = (−
√

3 t, 0, t) for t ∈ R are
minimum points of f , with f(−

√
3 t, 0, t) = 0 for all t.

a)

The Lagrangian is L = x2 − y2 − x3 − λ(x2 + y2), and the Kuhn–Tucker conditions for (x∗, y∗)
are:

L′x = 2x− 3x2 − 2λx = x(2− 3x− 2λ) = 0

L′y = −2y − 2λy = −2y(1 + λ) = 0

C : x2 + y2 ≤ 1

CSC : λ ≥ 0 and λ · (x2 + y2 − 1) = 0

Suppose first that λ = 0. Then the system is

x(2− 3x) = 0, −2y = 0, x2 + y2 ≤ 1

and the candidate points are (0, 0) and (2/3, 0) with λ = 0. Next, suppose that λ > 0. Then
the system is

x(2− 3x− 2λ) = 0, −2y(1 + λ) = 0, x2 + y2 = 1

Then y = 0 by the middle equation, x = ±1 by the last equation, and λ = 1− 3x/2 = 1∓ 3/2.
With x = 1, we find λ < 0, so x = −1, y = 0 and λ = 5/2 gives the only candidate point
(−1, 0). Computing the values of f for the candidate points give:

f(0, 0) = 0,

f(2/3, 0) = (2/3)2 − (2/3)3 = 4/27 < 1

f(−1, 0) = 2

Since the set of points satisfying the constraint x2 + y2 ≤ 1 is compact, the maximal value of
f(x, y) on x2 + y2 ≤ 1 is fmax = 2 at (x∗, y∗) = (−1, 0) with λ = 5/2.

b)
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Question 3.

The steady state solvesẋẏ
ż

 =

0
0
0

 ⇔

2 0 1
0 −1 0
0 2 1

 ·
xy
z

 =

2
5
4


Performing Gauss–Jordan elimination on the augmented coefficient matrix, we get2 0 1 2

0 −1 0 5
0 2 1 4

 ∼
2 0 1 2

0 1 0 −5
0 0 1 14

 ∼
2 0 0 −12

0 1 0 −5
0 0 1 14

 ∼
1 0 0 −6

0 1 0 −5
0 0 1 14


so the steady state is (x̄, ȳ, z̄) = (−6,−5, 14).

a)

With w = (x+ 6, y + 5, z − 14) we get

w′ =

ẋẏ
ż

 =

2 0 1
0 −1 0
0 2 1

 ·
xy
z

−
2

5
4

 =

2 0 1
0 −1 0
0 2 1

 ·w = A ·w

This means that the matrix A is given by

A =

2 0 1
0 −1 0
0 2 1


To find the eigenvalues of A, we solve the characteristic equation

det(A− λI) =

∣∣∣∣∣∣
2− λ 0 1

0 −1− λ 0
0 2 1− λ

∣∣∣∣∣∣ = (2− λ)(−1− λ)(1− λ) = 0

so the eigenvalues are λ1 = 2, λ2 = −1, and λ3 = 1. The base {vi} of the eigenspace of A for
the eigenvalue λ = λi is found by solving the linear system (A− λI)v = 0. We find

Eλ1 :

0 0 1 0
0 −3 0 0
0 2 −1 0

 ∼
0 0 1 0

0 1 0 0
0 0 0 0

 , so v1 =

1
0
0


Eλ2 :

3 0 1 0
0 0 0 0
0 2 2 0

 ∼
1 0 1

3 0
0 1 1 0
0 0 0 0

 , so v2 = (−3) ·

−1
3
−1
1

 =

 1
3
−3


Eλ3 :

1 0 1 0
0 −2 0 0
0 2 0 0

 ∼
1 0 1 0

0 1 0 0
0 0 0 0

 so v3 =

−1
0
1



b)

The general solution can be found using the above eigenvalues and eigenvectors for A and
substituting for w:

w = C1

1
0
0

 e2t + C2

 1
3
−3

 e−t + C3

−1
0
1

 et ⇒


x(t) = C1e

2t + C2e
−t − C3e

t − 6

y(t) = 3C2e
−t − 5

z(t) = −3C2e
−t + C3e

t + 14

The initial conditions give the system

x(0) = C1 + C2 − C3 − 6 = −1, y(t) = 3C2 − 5 = 10, z(t) = −3C2 + C3 + 14 = −1

The middle equation gives C2 = 5, and adding the first and last equation gives C1−2C2+8 = −2,
so C1 = 0. When we substitute this into the first equation, we get C3 = 0. Hence we getxy

z

 =

 5e−t − 6
15e−t − 5
−15e−t + 14

 ⇒ lim
t→∞

x(t)
y(t)
z(t)

 =

−6
−5
14


since e−t → 0 when t→∞.

c)
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Question 4.

By definition, a function f is convex on S if f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y) for λ in [0, 1]
and x,y in S. We assume that f1, . . . , fm have this property, and check it for F = a1f1 + · · ·+amfm:

F (λx + (1− λ)y) =
m∑
i=1

aifi(λx + (1− λ)y) ≤
m∑
i=1

ai [λfi(x) + (1− λ)fi(y)]

= λ
m∑
i=1

aifi(x) + (1− λ)
m∑
i=1

aifi(y) = λF (x) + (1− λ)F (y)

We conclude that f1, . . . , fm convex and a1, . . . , am ≥ 0 implies that F is convex.

Question 5.

Since 5− u is decreasing on U , we have that u∗3 = 0 and

J3(x) = max
u

(5− u)x2 = 5x2

Using that J3(x3) = 5(u2x2)
2, we have that

J2(x) = max
u

{
(5− u)x2 + 5(ux)2

}
= max

u
(5− u+ 5u2)x2

Since h2(u) = 5− u+ 5u2 is convex on U , with minimum for u = 1/10, and h2(0) = 5 and h2(1) = 9,
the maximum value is attained for u∗2 = 1, hence J2(x) = 9x2. Using that J2(x2) = 9(u1x1)

2, we have
that

J1(x) = max
u

{
(5− u)x2 + 9(ux)2

}
= max

u
(5− u+ 9u2)x2

Since h1(u) = 5−u+9u2 is convex on U , with minimum for u = 1/18, and h1(0) = 5 and h1(1) = 13,
the maximum value is attained for u∗1 = 1, hence J1(x) = 13x2. Using that J1(x1) = 13(u0x0)

2, we
have that

J0(x) = max
u

{
(5− u)x2 + 13(ux)2

}
= max

u
(5− u+ 13u2)x2

Since h0(u) = 5−u+13u2 is convex on U , with minimum for u = 1/26, and h0(0) = 5 and h0(1) = 17,
the maximum value is attained for u∗0 = 1, hence J0(x) = 17x2 and the optimal value is J0(x0) = 17x20.

Question 6.

The Lagrangian is L = (p1 − x1)2 + (p2 − x2)2 − λ (a1x1 + a2x2), and we have the following
Lagrange conditions:

L′x = −2(p1 − x1)− a1λ = 0

L′y = −2(p2 − x2)− a2λ = 0

C : a1x1 + a2x2 = 0

Using the first two conditions, we get x1 = p1 + λa1/2 and x2 = p2 + λa2/2. When we put this
into the constraint, we get

a1(p1 +
1

2
λa1) + a2(p2 +

1

2
λa2) = a1p1 + a2p2 +

λ

2
(a21 + a22) = 0

and we can solve this equation for λ since a21 + a22 > 0:

λ = − 2

a21 + a22
(a1p1 + a2p2)

Substituting λ into the expressions for x1 and x2 gives

x1 =
(a2p1 − a1p2)

(a21 + a22)
a2, x2 = −(a2p1 − a1p2)

(a21 + a22)
a1

To show that this candidate point is a minimum for f , we observe that f is a positive semi-
definite quadratic form and therefore a convex function, and that the constraint is linear. This
means that

h(x, y) = L(x, y;λ∗)

is a convex function when λ∗ is the value of λ at the candidate point. By the second order
condition, this means that the candidate point (x∗, y∗) found above is a minimum point.

a)
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The function f is the square of the distance from the given point p to a point x = (x1, x2)
on the line a1x1 + a2x2 = 0. The point x∗ minimizes this function, hence it is the point in
the line that is closest to p. If the inner product of the two vectors is equal to zero, then they
are orthogonal. We compute the inner product of p − x∗ and x∗ directly, using the notation
c = (a2p1 − a1p2) and d = (a21 + a22):

(p− x∗) · x∗ =
(
p1 − a2

c

d
, p2 + a1

c

d

)
·
(
a2
c

d
,−a1

c

d

)
= a2p1

c

d
− a22

c2

d2
− a1p2

c

d
− a21

c2

d2

= (a2p1 − a1p2)
c

d
− (a21 + a22)

c2

d2
=
c2

d
− c2

d
= 0

This means that the vectors are orthogonal.

b)
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