EXAMINATION QUESTION PAPER - Written examination

DRE 70171 Mathematics, Ph.D.

Department of Economics			
Start date:	13.10.2020	Time 09.00	
Finish date:	13.10.2020	Time 12.00	
Weight:	100% of DRE 7017		
Total no. of pages:	3 incl. front page		
Answer sheets:	Squares		
Examination support materials permitted:	BI-approved exam calculator. Simple calculator. Bilingual dictionary.		

Exam Final exam in DRE 7017 Mathematics, Ph.D. Date October 13th, 2020 at 0900 - 1200

This exam consists of 10 problems of equal weight. You must give reasons for your answers. Precision and clarity will be emphasized when evaluating your answers.

Question 1.

Let I = [0, 1] be the unit interval, and consider the vector space $V = C(I, \mathbb{R})$ of continuous functions on I, equipped with the inner product

$$f \cdot g = \int_0^1 f(t)g(t) \,\mathrm{d}t$$

Compute $f \cdot g$ when $f(t) = t^a$ and $g(t) = t^b$ for positive constants a, b > 0.

Question 2.

a) Find the stationary points of the following function, and classify them:

$$f(x, y, z) = x^{2} + 2y^{2} + 3z^{2} + \sqrt{12} xz$$

b) Solve the following Kuhn–Tucker problem:

$$\max f(x, y) = x^{2} - y^{2} - x^{3} \quad \text{when} \quad x^{2} + y^{2} \le 1$$

Question 3.

A linear system of differential equations is given by

$$\dot{x} = 2x + z - 2$$
$$\dot{y} = -y - 5$$
$$\dot{z} = 2y + z - 4$$

- a) Find the steady state $(\bar{x}, \bar{y}, \bar{z})$ of the system.
- b) Rewrite the system in the form $\mathbf{w}' = A\mathbf{w}$, determine all eigenvalues of A, and find three linearly independent eigenvectors for A.
- c) Find the general solution to the linear system of differential equations, and show that

$$\lim_{t \to \infty} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} \bar{x} \\ \bar{y} \\ \bar{z} \end{pmatrix}$$

when x(0) = -1, y(0) = 10, and z(0) = -1.

Question 4.

Let f_1, \ldots, f_m be real valued functions defined on a convex set S in \mathbb{R}^n . Show that if f_1, \ldots, f_m are convex functions and $a_1, \ldots, a_m \ge 0$, then the function

$$F = \sum_{i=1}^{m} a_i f_i$$

is convex.

Question 5.

Consider the following optimal control problem with control region U = [0, 1]:

$$\max_{u_t \in U} \sum_{t=0}^{3} (5-u_t) x_t^2 \quad \text{when} \quad \begin{cases} x_0 \text{ given} \\ x_{t+1} = u_t x_t \\ t = 0, 1, 2, 3 \end{cases}$$

Compute the value functions $J_t(x)$ and the corresponding control functions $u_t^*(x)$ for t = 0, 1, 2, 3, and solve the problem when x_0 is given.

Question 6.

Let $\mathbf{a} = (a_1, a_2) \neq (0, 0)$ and $\mathbf{p} = (p_1, p_2)$ be given vectors in \mathbb{R}^2 , and consider the following Lagrange problem:

$$\min f(x_1, x_2) = (p_1 - x_1)^2 + (p_2 - x_2)^2 \quad \text{when} \quad a_1 x_1 + a_2 x_2 = 0$$

- a) Find the minimum point $\mathbf{x}^* = (x_1^*, x_2^*)$ of the Lagrange problem.
- b) Give a geometrical interpretation of \mathbf{x}^* , and show that \mathbf{x}^* and $\mathbf{p} \mathbf{x}^*$ are orthogonal vectors.