Solutions Final exam in DRE 7017 Mathematics, Ph.D.
 Date October 14th, 2022 at 0900-1200

Question 1.

a) The subset $D \subseteq \mathbb{R}^{n}$ is clearly closed since it is defined by closed inequalities, and it is bounded since $-1 \leq x, y \leq 1,-3 \leq z \leq 3,-2 \leq w \leq 2$ for all $(x, y, z, w) \in D$, therefore D is compact. The set $D_{1}=\left\{(x, y, z, w): x^{2}+y^{2} \leq 1\right\}$ is convex since $x^{2}+y^{2} \leq 1$ defines a convex set in the plane (bounded by a circle), and the set $D_{2}=\left\{(x, y, z, w): 4 z^{2}+9 w^{2} \leq 36\right\}$ is convex since $4 z^{2}+9 w^{2} \leq 36$ defines a convex set in the plane (bounded by an ellipse). It follows that the intersection $D=D_{1} \cap D_{2}$ is a convex set.
b) The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian

$$
\mathcal{L}=x w-y z-\lambda_{1}\left(x^{2}+y^{2}-1\right)-\lambda_{2}\left(4 z^{2}+9 w^{2}-36\right)
$$

The first order conditions (FOC) are

$$
\mathcal{L}_{x}^{\prime}=w-2 \lambda_{1} x=0, \quad \mathcal{L}_{y}^{\prime}=-z-2 \lambda_{1} y=0, \quad \mathcal{L}_{z}^{\prime}=-y-8 \lambda_{2} z=0, \quad \mathcal{L}_{w}^{\prime}=x-18 \lambda_{2} w=0
$$

the constraints (C) are given by $x^{2}+y^{2} \leq 1$ and $4 z^{2}+9 w^{2} \leq 36$, and the complementary slackness conditions (CSC) are given by

$$
\begin{array}{lll}
\lambda_{1} \geq 0 & \text { and } & \lambda_{1}\left(x^{2}+y^{2}-1\right)=0 \\
\lambda_{2} \geq 0 & \text { and } & \lambda_{2}\left(4 z^{2}+9 w^{2}-36\right)=0
\end{array}
$$

By the FOC's, $x=0$ when $w=0$, and $z=-2 \lambda_{1} y$ gives $y=-8 \lambda_{2}\left(-2 \lambda_{1} y\right)=16 \lambda_{1} \lambda_{2} y$. Hence $y\left(1-16 \lambda_{1} \lambda_{2}\right)=0$, which gives $y=0$ or $\lambda_{1} \lambda_{2}=1 / 16$. If $y=0$, then $z=0$, and we obtain the solution

$$
\left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(0,0,0,0 ; 0,0)
$$

of the Kuhn-Tucker conditions. Otherwise $\lambda_{1} \lambda_{2}=1 / 16$, and this means that $\lambda_{1}, \lambda_{2}>0$, hence $x^{2}+y^{2}=1$ and $4 z^{2}+9 w^{2}=36$, which gives $y= \pm 1$ and $z= \pm 3$. Finally, we have $2 \lambda_{1}=-z / y>0$, hence $\lambda_{1}=3 / 2$ and therefore $\lambda_{2}=1 / 24$ and y, z have opposite signs. Hence we obtain the solutions

$$
\left(x, y, z, w ; \lambda_{1}, \lambda_{2}\right)=(0,1,-3,0 ; 3 / 2,1 / 24),(0,-1,3,0 ; 3 / 2,1 / 24)
$$

of the Kuhn-Tucker conditions. We conclude that the Kuhn-Tucker conditions have three solutions with $w=0$.

Question 2.

a) The Hamiltonian is $H=p_{0}\left(2 x-3 u-u^{2}\right)+p(x+u)$, where $p_{0}=1$ or $p_{0}=0$, and $\left(p_{0}, p\right) \neq(0,0)$. The necessary conditions for optimum are $H_{u}^{\prime}=p_{0}(-3-2 u)+p=0$ (since $U=\mathbb{R}$ has no boundary points), $-H_{x}^{\prime}=-\left(2 p_{0}+p\right)=p^{\prime}$, and $p(2)=0$.
b) The sufficient condition in Mangasarian's criterion is that H is concave in (x, u), and this is clearly satisfied since $-p_{0} u^{2}$ is the unique term that is not linear in (x, u).
c) When $p_{0}=0$, the condition $p_{0}(-3-2 u)+p=0$ gives $p=0$, which is not admissible since it would give $\left(p_{0}, p\right)=(0,0)$. We therefore assume that $p_{0}=1$. The condition $-\left(2 p_{0}+p\right)=p^{\prime}$ gives the differential equation $p^{\prime}+p=-2$, which we solve using integrating factor:

$$
\left(p e^{t}\right)^{\prime}=-2 e^{t} \quad \Rightarrow \quad p e^{t}=\int-2 e^{t} \mathrm{~d} t=-2 e^{t}+C \quad \Rightarrow \quad p=-2+C e^{-t}
$$

The initial condition $p(2)=0$ then gives $0=-2+C e^{-2}$, or $C=2 e^{2}$, and $p(t)=-2+2 e^{2-t}$. When we substitute p in the condition $p_{0}(-3-2 u)+p=0$, we obtain the equation $2 u=-3+p$, or

$$
u=(-3+p) / 2=\left(-5+2 e^{2-t}\right) / 2=-5 / 2+e^{2-t}
$$

To find x, we use the differential equation $x^{\prime}=x+u$, which can be written $x^{\prime}-x=-5 / 2+e^{2-t}$, and multiplying with an integrating factor gives

$$
\left(x e^{-t}\right)^{\prime}=-5 / 2 e^{-t}+e^{2-2 t} \quad \Rightarrow \quad x e^{-t}=\int-5 / 2 e^{-t}+e^{2-2 t} \mathrm{~d} t=5 / 2 e^{-t}-1 / 2 e^{2-2 t}+C
$$

Therefore $x=5 / 2-1 / 2 e^{2-t}+C e^{t}$. The initial condition $x(0)=5$ gives $5=5 / 2-1 / 2 e^{2}+C$, or $C=5 / 2+e^{2} / 2$. Since we obtain a normal solution (with $p_{0}=1$) and Mangasarian's necessary condition is satisfied, the optimal solution is given by

$$
x(t)=\frac{5}{2}-\frac{1}{2} e^{2-t}+\frac{5}{2} e^{t}+\frac{1}{2} e^{2+t}
$$

Question 3.

a) We have that $\operatorname{rk}(A-\lambda I)=1$ when $\lambda=t-t^{2}$ since $t-\lambda=t-\left(t-t^{2}\right)=t^{2}$ and $A-\lambda I$ has echelon form

$$
A-\lambda I=\left(\begin{array}{ccccc}
t^{2} & t^{2} & t^{2} & t^{2} & t^{2} \\
t^{2} & t^{2} & t^{2} & t^{2} & t^{2} \\
t^{2} & t^{2} & t^{2} & t^{2} & t^{2} \\
t^{2} & t^{2} & t^{2} & t^{2} & t^{2} \\
t^{2} & t^{2} & t^{2} & t^{2} & t^{2}
\end{array}\right) \rightarrow\left(\begin{array}{ccccc}
t^{2} & t^{2} & t^{2} & t^{2} & t^{2} \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Hence it has rank one when $t \neq 0$. This means that $\lambda=t-t^{2}$ is an eigenvalue of multiplicity $m \geq \operatorname{dim} E_{\lambda}=4$. In fact, $m=4$ since A is symmetric. Alternatively, $\lambda_{1}=\lambda_{2}=\lambda_{3}=\lambda_{4}=t-t^{2}$ (since $m \geq 4$) and λ_{5} is determined by

$$
\operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{5} \quad \Rightarrow \quad 5 t=4\left(t-t^{2}\right)+\lambda_{5} \quad \Rightarrow \quad \lambda_{5}=t+4 t^{2}
$$

Since $\lambda_{5}=t+4 t^{2} \neq t-t^{2}$, the multiplicity $m=4$.
b) We have $\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{5}=\left(t-t^{2}\right)^{4}\left(t+4 t^{2}\right)=t^{5}(1-t)^{4}(1+4 t)$.

Question 4.

a) The set V of 2×2 matrices has the natural operations addition and scalar multiplication. We have a natural map $\phi: V \rightarrow \mathbb{R}^{4}$ given by

$$
\phi\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=(a, b, c, d)
$$

We notice that this map is a bijection, and the above mentioned operations on V correspond to addition and scalar multiplication in the Euclidean space \mathbb{R}^{4}. Therefore, V is a vector space and $\operatorname{dim} V=\operatorname{dim} \mathbb{R}^{4}=4$. Alternatively, we could also show that the operations on V satisfy the axioms of a vector space, and find a base of V to compute the dimension.
b) For the matrix A, we have that $A^{T} \cdot A$ is given by

$$
A^{T} A=\left(\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right)=\left(\begin{array}{cc}
1^{2}+3^{2} & 1 \cdot 4+3 \cdot 2 \\
1 \cdot 4+3 \cdot 2 & 4^{2}+2^{2}
\end{array}\right)
$$

and therefore that $\|A\|^{2}$ is given by

$$
\|A\|^{2}=\operatorname{tr}\left(A^{T} A\right)=1^{2}+3^{2}+4^{2}+2^{2}=30
$$

and $\|A\|=\sqrt{30}$.
c) For a general matrix A in V, we have that $A^{T} A$ is given by

$$
A=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \quad \Rightarrow \quad A^{T} A=\left(\begin{array}{ll}
a & c \\
b & d
\end{array}\right) \cdot\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)=\left(\begin{array}{ll}
a^{2}+c^{2} & a b+c d \\
a b+c d & d^{2}+b^{2}
\end{array}\right)
$$

This means that $\|A\|^{2}$ is given by

$$
\|A\|^{2}=\operatorname{tr}\left(A^{T} A\right)=a^{2}+c^{2}+d^{2}+b^{2}
$$

and therefore $\|A\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}$, which corresponds to the Euclidean norm on \mathbb{R}^{4} via ϕ. It follows that $\|A\|$ is a norm on V. Alternatively, we can check that the axioms for a norm is satisfied for $\|A\|=\sqrt{\operatorname{tr}\left(A^{T} A\right)}$.

