Solutions Final exam in DRE 7017 Mathematics, Ph.D.
Date October 14th, 2022 at 0900 - 1200

Question 1.

a) The subset D C R" is clearly closed since it is defined by closed inequalities, and it is bounded
since =1 <z,y <1, -3<2<3, —2<w<2for all (z,y,z,w) € D, therefore D is compact.
The set Dy = {(z,y, z,w) : 22 + y? < 1} is convex since 22 4+ y? < 1 defines a convex set in the
plane (bounded by a circle), and the set Dy = {(z,y, z,w) : 422 + 9w? < 36} is convex since
422 + 9w? < 36 defines a convex set in the plane (bounded by an ellipse). It follows that the
intersection D = D1 N Dy is a convex set.

b) The Kuhn-Tucker problem is already in standard form, so we form the Lagrangian
L=xw—yz— (2% +19% — 1) — \a(42% + 9uw? — 36)
The first order conditions (FOC) are

L, =w—2\x =0, E;:fzfQ)\ly:(), Lo=—y—8lz=0, L =x—-18w=0
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the constraints (C) are given by 22 + y?> < 1 and 4z + 9w? < 36, and the complementary

slackness conditions (CSC) are given by

M >0 and MN(z®4+132—-1)=0

A2 >0 and  Ay(42° 4+ 9uw? —36) =0
By the FOC’s, x = 0 when w = 0, and z = —2\1y gives y = —8X2(—2A1y) = 161 \2y. Hence
y(1 — 16A1M\2) = 0, which gives y = 0 or A\ = 1/16. If y = 0, then z = 0, and we obtain the
solution

(x,y, z,w; A1, A2) = (0,0,0,0;0,0)

of the Kuhn-Tucker conditions. Otherwise A\;\y = 1/16, and this means that A;, A2 > 0,
hence 2% + 4?2 = 1 and 422 + 9w? = 36, which gives y = +1 and z = 43. Finally, we have

2A\1 = —z/y > 0, hence \; = 3/2 and therefore Ay = 1/24 and y, z have opposite signs. Hence
we obtain the solutions

(2,9, 2, w; A1, A2) = (0,1,—3,0;3/2,1/24), (0, —1,3,0;3/2,1/24)

of the Kuhn-Tucker conditions. We conclude that the Kuhn-Tucker conditions have three solu-
tions with w = 0.

Question 2.

a) The Hamiltonian is H = po(2z —3u —u?) +p(x+u), where py = 1 or pg = 0, and (po, p) # (0, 0).
The necessary conditions for optimum are H, = po(—3 — 2u) + p = 0 (since U = R has no
boundary points), —H. = —(2po + p) = p/, and p(2) = 0.

b) The sufficient condition in Mangasarian’s criterion is that H is concave in (x,u), and this is

clearly satisfied since —pg u? is the unique term that is not linear in (z,u).
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¢) When py = 0, the condition pg(—3 — 2u) + p = 0 gives p = 0, which is not admissible since it
would give (pg,p) = (0,0). We therefore assume that pg = 1. The condition —(2py + p) = p’
gives the differential equation p’ +p = —2, which we solve using integrating factor:

(pe')' = —2¢' = pe' = /—Qetdt =2'4+C = p=-2+Ce"

The initial condition p(2) = 0 then gives 0 = —2 + Ce™2, or C' = 2¢%, and p(t) = —2 + 2e*7%.
When we substitute p in the condition py(—3 —2u)+p = 0, we obtain the equation 2u = —3+p,
or

u=(=3+p)/2=(-5+2e*""/2=—5/24¢*"
To find z, we use the differential equation 2’ = z+wu, which can be written 2’ — 2z = —5/2+ €27t
and multiplying with an integrating factor gives

(ze ) = —5/2e t + €272 = zel= /—5/26_t + 22t =5/2e7t —1/227 % 4 C

Therefore x = 5/2 —1/2e%~! + Ce’. The initial condition x(0) = 5 gives 5 = 5/2 —1/2¢> 4+ C, or
C =5/2 + €2/2. Since we obtain a normal solution (with py = 1) and Mangasarian’s necessary
condition is satisfied, the optimal solution is given by
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Question 3.

a) We have that tk(A — AI) =1 when A =t —t? since t — A =t — (t — t?) = t? and A — \[ has
echelon form

2 12 2 42 42 2 12 12 42 42
2 2 2 2 2 00 0 0 O
A-XI=|t 2 ¢ ¢ | =10 0 0 0 0
2 2 12 2 2 0 0 0 0 O
2 2 2 2 2 0 0 0 0 O

Hence it has rank one when ¢ # 0. This means that A = ¢t — t? is an eigenvalue of multiplicity
m > dim E) = 4. In fact, m = 4 since A is symmetric. Alternatively, \{ = Ao = A3 = Ay = t—t2
(since m > 4) and A5 is determined by

tr(A) =X +--+Xs = 5Bt=4(t—1t)+X s = I5=t+4t>
Since A5 = t + 412 # t — 2, the multiplicity m = 4.
b) We have det(A) = Ay --- A5 = (t — t2)4(t + 4t?) = t5(1 — t)*(1 + 4¢).
Question 4.

a) The set V of 2 x 2 matrices has the natural operations addition and scalar multiplication. We
have a natural map ¢ : V — R* given by

¢ (‘c‘ Z) = (a,b,c,d)

We notice that this map is a bijection, and the above mentioned operations on V' correspond
to addition and scalar multiplication in the Euclidean space R*. Therefore, V is a vector space
and dimV = dimR* = 4. Alternatively, we could also show that the operations on V satisfy
the axioms of a vector space, and find a base of V' to compute the dimension.

b) For the matrix A, we have that AT - A is given by
ara— (13 (L 4 _ 12+32  1-4+43-2
“\42) \3 2) 14432 42+22
and therefore that ||A||? is given by

JA|]? = tr(ATA) =17 + 3% + 4% + 2 = 30
and ||A|| = v/30.



c¢) For a general matrix A in V, we have that AT A is given by

_fa b T, f[a c a b\ _(a®*+c* ab+cd
A_<c d) = AA_(b d>'<c d>_<ab+cd d2+b2>
This means that ||A||? is given by
A2 = tr(ATA) =a®> + 2+ > + b?

and therefore ||A|| = v/a? + b2 + ¢2 + d?, which corresponds to the Euclidean norm on R* via
¢. It follows that ||A|| is a norm on V. Alternatively, we can check that the axioms for a norm

is satisfied for ||A|| = \/tr(AT A).




