```
Exam Final exam in DRE 7017 Mathematics, Ph.D.
Date October 14th, 2022 at 0900-1200
```

This exam consists of 10 problems of equal weight. You must give reasons for your answers.

Question 1.

We consider the Kuhn-Tucker problem

$$
\max f(x, y, z, w)=x w-y z \text { subject to }\left\{\begin{array}{l}
x^{2}+y^{2} \leq 1 \\
4 z^{2}+9 w^{2} \leq 36
\end{array}\right.
$$

a) Show that the set D of points satisfying both constraints is compact. Is it convex?
b) Write down the Kuhn-Tucker conditions, and find all solutions with $w=0$.

Question 2.

Consider the optimal control problem

$$
\max \int_{0}^{2}\left(2 x-3 u-u^{2}\right) \mathrm{d} t \text { when }\left\{\begin{array}{l}
x(0)=5 \\
x^{\prime}=x+u \\
u \in U=\mathbb{R}
\end{array}\right.
$$

a) Write down the Hamiltonian and the necessary conditions for optimum.
b) Show that the sufficient condition in Mangasarian's criterion is satisfied.
c) Solve the problem.

Question 3.

Let t be a parameter with $t \neq 0$, and consider the matrix

$$
A=\left(\begin{array}{ccccc}
t & t^{2} & t^{2} & t^{2} & t^{2} \\
t^{2} & t & t^{2} & t^{2} & t^{2} \\
t^{2} & t^{2} & t & t^{2} & t^{2} \\
t^{2} & t^{2} & t^{2} & t & t^{2} \\
t^{2} & t^{2} & t^{2} & t^{2} & t
\end{array}\right)
$$

a) Show that $\lambda=t-t^{2}$ is an eigenvalue of A, and determine its multiplicity.
b) Use the result in a) to compute the determinant of A.

Question 4.

Let V be the set of all 2×2 matrices.
a) Explain that V is a vector space, and find its dimension.
b) For any matrix $A \in V$, we define $\|A\|=\sqrt{\operatorname{tr}\left(A^{T} A\right)}$. Compute $\|A\|$ when A is the matrix

$$
A=\left(\begin{array}{ll}
1 & 4 \\
3 & 2
\end{array}\right)
$$

c) Prove that $\|A\|=\sqrt{\operatorname{tr}\left(A^{T} A\right)}$ is a norm on V.

