Exercise Problems

Problem 1.

Find all critical points of the function $f(x, y)=x^{4}+2 x^{2} y^{2}+y^{4}-x^{2}-y^{2}$ defined on $D=\mathbb{R}^{2}$, and classify them as local maxima, local minima or saddle points. Does f have a global maximum or minimum on D ?

Problem 2.

Consider the function $f: D \rightarrow \mathbb{R}$, defined by $f(x, y)=\ln \left(1-x^{2}-y^{2}\right)$ on the open set $D=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$. Is f concave? Find max $f(x, y)$ when $(x, y) \in D$.

Problem 3.

Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $f(x, y)=3 x^{4}+3 x^{2} y-y^{3}$. Find all the critical points of f and classify their type. Is there a global maximum or a global minimum for f ?

