Exercise Problems

Problem 1.

Find the steady state (\bar{x}, \bar{y}) and use it to solve the linear system of differential equations given by

$$
\begin{aligned}
x^{\prime} & =x-2 y-5 \\
y^{\prime} & =x+4 y+1
\end{aligned}
$$

Find the initial states $\left(x_{0}, y_{0}\right)$ such that $(x, y) \rightarrow(\bar{x}, \bar{y})$ as $t \rightarrow \infty$.

Problem 2.

Solve the linear system of differential equations given by

$$
\begin{aligned}
x^{\prime} & =x-2 y-6 z+7 \\
y^{\prime} & =2 x+5 y+6 z-4 \\
z^{\prime} & =-2 x-2 y-3 z+4
\end{aligned}
$$

Find the initial states $\left(x_{0}, y_{0}, z_{0}\right)$ such that $(x, y, z) \rightarrow(\bar{x}, \bar{y}, \bar{z})$ as $t \rightarrow \infty$.

Problem 3.

In the paper Innovation, Imitation, and Intellectual Property Rights, Helpman considers the following non-linear systems of differential equations

$$
\begin{aligned}
& \dot{\xi}=g-(g+m) \xi \\
& \dot{g}=\left(\frac{L^{N}}{a}-g\right)\left[\rho+m+g-\frac{1-\alpha}{\alpha}\left(\frac{L^{N}}{a}-g\right) \frac{1}{\xi}\right]
\end{aligned}
$$

where $m, L^{N}, a, \rho, \alpha$ are positive parameters with $0<\alpha<1$. We consider values of the variables ξ, g with $0<\xi<1$ and $0<g<L^{N} / a$. Express the linearized system of differential equations at the steady state in terms of $\bar{\xi}$ and \bar{g}, and show that the system is not globally asymptotically stable. (Hint: Use specific values for the parameters if you cannot solve the problem for general values).

