Exercise Problems

Problem 1.

We consider the function $f: D \to \mathbb{R}$ on $D = (1, \infty) \subseteq \mathbb{R}$, given by

$$f(x) = \frac{1}{2} \left(x + \frac{a}{x} \right)$$

where $a \in \mathbb{R}$ is a given number.

- a. Show that f defines an operator $f: D \to D$ if $a \in (1,3)$.
- b. Show that f is a contraction and find its fixed point for each $a \in (1,3)$. What about a = 1 and a = 3?
- c. Is D complete?

Problem 2.

Consider the correspondence $F:[0,2]\twoheadrightarrow [0,2]$ given by

$$F(x) = \begin{cases} \{2\} & x \in [0,1) \\ \{0,2\} & x = 1 \\ \{0\} & x \in (1,2] \end{cases}$$

Describe the graph of F. Does Kakutani's Theorem apply? Does F have any fixed points?