Exercise Problems

Problem 1.

We consider the function $f: D \rightarrow \mathbb{R}$ on $D=(1, \infty) \subseteq \mathbb{R}$, given by

$$
f(x)=\frac{1}{2}\left(x+\frac{a}{x}\right)
$$

where $a \in \mathbb{R}$ is a given number.
a. Show that f defines an operator $f: D \rightarrow D$ if $a \in(1,3)$.
b. Show that f is a contraction and find its fixed point for each $a \in(1,3)$. What about $a=1$ and $a=3$?
c. Is D complete?

Problem 2.

Consider the correspondence $F:[0,2] \rightarrow[0,2]$ given by

$$
F(x)= \begin{cases}\{2\} & x \in[0,1) \\ \{0,2\} & x=1 \\ \{0\} & x \in(1,2]\end{cases}
$$

Describe the graph of F. Does Kakutani's Theorem apply? Does F have any fixed points?

