EBA2911 Mathematics for Business Analytics autumn 2019
 Exercises

I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.
R. Lucas

Lecture 12

Sec. 6.3, 6.10-11, 8.1-2, 8.4, 8.6
Rules for differentiation. Optimisation (one variable).
Here are recommended exercises from the textbook [SHSC].
Section 6.1 exercise 1, 2
Section 6.2 exercise 1, 6, 8
Section 6.6 exercise 1, 3
Section 6.7 exercise 1-4, 7
Section 6.8 exercise 1, 10
Problems for the exercise session
Wednesday 30 Oct. from 14 o'clock in B2-085
Problem 1 Make a sketch of the graphs of two different functions $f(x)$ with the given data. Note: You are not supposed to find any algebraic expression!
a) $f^{\prime}(x)$ is negative for $x<5$ and positive for $x>5$
b) $f^{\prime}(x)$ is positive for $x<10$, negative for $10<x<15$ and positive for $x>15$
c) $f^{\prime}(x)$ is negative for $x<5, f^{\prime}(5)=0, f^{\prime}(x)$ is negative for $5<x<12$ and $f^{\prime}(x)$ is positive for $x>12$

Problem 2 I figure 1 you see the graph of $f^{\prime}(x)$.

Figure 1: Graph of $f^{\prime}(x)$

Determine if the statement is true or false.
a) $f^{\prime}(2)<f^{\prime}(3)$
b) $f(2)<f(3)$
c) $f(4,5)>f(5)$
d) $f(x)$ has a (local) minimum for $x=3,5$
e) $f(x)$ has a (local) minimum for $2<x<3$
f) the graph of $f(x)$ has no local minimum points
g) $f(x)$ decreases in the
h) $f(x)$ increases faster around $x=1,5$ than around $x=5,5$ interval $[6,7]$
i) The derivative of $f^{\prime}(x)$ is positive for $x=7,6$
j) $f(4,5)>f(5)$
k) We cannot use the graph of $f^{\prime}(x)$ to determine if $f(4,5)$ is positive

Problem 3 In figure 2 you see the graphs of $f(x)$ and $f^{\prime}(x)$ in the same coordinate system. Determine which is the graph of $f(x)$ and which is the graph of $f^{\prime}(x)$ in (a-c).

Figure 2: (a-c): The graphs of $f(x)$ and $f^{\prime}(x)$
Problem 4 Determine the stationary points of $f(x)$, where $f(x)$ is strictly decreasing/increasing, and find (local) maximum and minimum points.
a) $f^{\prime}(x)=4(x+1)(x-2)(x-5)$
b) $f^{\prime}(x)=(x-20) e^{x}$
c) $f^{\prime}(x)=\frac{(3 x-5)(10-2 x)}{x^{2}-6 x+10}$
d) $f^{\prime}(x)=\ln (x)-1,12$
e) $f^{\prime}(x)=\ln \left(x^{2}-6 x+10\right)$
f) $f^{\prime}(x)=\ln \left(x^{2}-8\right),(x>2,9)$
g) $f^{\prime}(x)=e^{2 x}-4 e^{x}+3$
h) $f^{\prime}(x)=e^{x^{2}-3}-2$

Problem 5 Determine maximum and minimum for these functions.
a) $f(x)=1000-0,2 x$ and $D_{f}=[50,250]$
b) $f(x)=0,2 x^{2}-2,8 x+19,8$ and $D_{f}=[2,12]$
c) $f(x)=20-\frac{1}{x-5}$ and $D_{f}=[6,15]$
d) $f(x)=10 x e^{-0,1 x}$ and $D_{f}=[2,30]$
e) $f(x)=2 x^{3}-33 x^{2}+168 x+9$ and
f) $f(x)=\ln \left(1+e^{-x}\right)$ and $D_{f}=[4,5]$ $D_{f}=[2,5,8,6]$

Problem 6

a) We have $f(x)=\sqrt{\ln \left[(x-4)^{2}\right]+5}+x^{3}-4 x$. Calculate $\frac{f(6)-f(2)}{4}$ and explain why there is a number c with $2<c<6$ such that $f^{\prime}(c)=48$.
b) We have a differentiable function $f(x)$ with $f(13)=600 e^{1,14}=f(17)$. Explain why $f(x)$ has a stationary point between 13 and 17 .
Problem 7 Compute the expression for the derivative of $f(x)$.
a) $f(x)=\ln \left(x^{2}-7 x+13\right)$
b) $f(x)=e^{0,035 x^{2}}$
c) $f(x)=\sqrt{e^{2 x}+4 x+5}$
d) $f(x)=\frac{x}{\ln (1-x)}$

Problem 8 (Multiple choice spring 2016, problem 12)
We have the function $f(x)=\ln \left(x^{2}+4 x+5\right)$. Which statement is true?
(A) The function f is increasing in $[2, \rightarrow\rangle$
(B) The function f is increasing in $[-2, \rightarrow\rangle$
(C) The function f is increasing in $\langle\leftarrow, 2]$
(D) The function f is increasing in $\langle\leftarrow,-2$]
(E) I choose not to solve this problem.

Problem 9 (Multiple choice autumn 2016, problem 10)
We have the function $f(x)=\frac{x^{2}-3 x}{x+1}$. Which statement is true?
(A) The function f has no local minimum points
(B) The function f has one local minimum point, and it is $x=-3$
(C) The function f has one local minimum point, and it is $x=1$
(D) The function f has several local minimum points
(E) I choose not to solve this problem.

Problem 10 (Multiple choice spring 2018, problem 10)
We have the function $f(x)=x^{2} e^{1-x}$. Which statement is true?
(A) The function f has one local maximum point $x=a$ med $a>0$
(B) The function f has several local maximum points
(C) The function f has one local maximum point $x=0$
(D) The function f has one local maximum point $x=a$ with $a<0$
(E) I choose not to solve this problem.

Answers

Problem 1

Compare with other students, ask the learning assistants!

Problem 2

Figure 3: True or false

Problem 3

a) $f(x)$: Green
b) $f(x)$: Brown
c) $f(x)$: Violet

Problem 4

a) Stationary points: $x=-1, x=2, x=5 . f(x)$ is strictly decreasing for $x \leqslant-1, f(x)$ is strictly increasing for $-1 \leqslant x \leqslant 2, f(x)$ is strictly decreasing for $2 \leqslant x \leqslant 5, f(x)$ is strictly increasing for $x \geqslant 5$. Hence $x=-1$ is a local minimum point, $x=2$ is a local maximum point and $x=5$ is a local minimum point.
b) Stationary points: Only $x=20 . f(x)$ is strictly decreasing for $x \leqslant 20$ and $f(x)$ is strictly increasing for $x \geqslant 20$. Hence $x=20$ is a global minimum point.
c) Stationary points: $x=\frac{5}{3}$ and $x=5$. $f(x)$ is strictly decreasing for $x \leqslant \frac{5}{3}, f(x)$ is strictly increasing for $\frac{5}{3} \leqslant x \leqslant 5, f(x)$ is strictly decreasing for $x \geqslant 5$. Hence $x=\frac{5}{3}$ is a local minimum point and $x=5$ is a local maximum point.
d) Stationary points: Only $x=e^{1,12} . f(x)$ is strictly decreasing for $x \leqslant e^{1,12}$ and $f(x)$ is strictly increasing for $x \geqslant e^{1,12}$. Hence $x=e^{1,12}$ is a global minimum point.
e) Stationary points: Only $x=3 . f(x)$ is strictly increasing for all x. Hence $x=3$ is nether a local minimum point nor a local maximum point (a terrace point).
f) Stationary points: Only $x=3 . f(x)$ is strictly decreasing for $2,9 \leqslant x \leqslant 3, f(x)$ is strictly increasing for $x \geqslant 3$. Hence $x=3$ is a global minimum point.
g) $f^{\prime}(x)=\left(e^{x}-1\right)\left(e^{x}-3\right)$. Stationary points: $x=0$ and $x=\ln (3) . f(x)$ is strictly increasing for $x \leqslant 0, f(x)$ is strictly decreasing for $0 \leqslant x \leqslant \ln (3)$ and $f(x)$ is strictly increasing for $x \geqslant \ln (3)$. Hence $x=0$ is a local maximum point and $x=\ln (3)$ is a local minimum point.
h) Stationary points: $x= \pm \sqrt{3+\ln (2)}$. $f(x)$ is strictly increasing for $x \leqslant-\sqrt{3+\ln (2)}$, $f(x)$ is strictly decreasing for $-\sqrt{3+\ln (2)} \leqslant x \leqslant \sqrt{3+\ln (2)}$ and $f(x)$ is strictly increasing for $x \geqslant \sqrt{3+\ln (2)}$. Hence $x=-\sqrt{3+\ln (2)}$ is a local maximum point and $x=\sqrt{3+\ln (2)}$ is a local minimum point.
Problem 5 We use the extreme value theorem (Sec. 8.4, Thm. 8.4.1, p. 294).
a) $\min f(250)=950 \max : f(50)=990$
b) $\min f(7)=10 \quad \max : f(2)=15=f(12)$
c) $\min : f(6)=19 \max : f(15)=19,9$
d) min: $f(30)=14,94$ max: $f(10)=36,79$
e) min: $f(7)=254=f(2,5) \quad \max : f(8,6)=285,23$
f) min: $f(5)=0,00672 \max : f(4)=0,01815$

Problem 6

a) $\frac{f(6)-f(2)}{4}=48$. Because $f(x)$ is differentiable for all x the mean value theorem (Sec. 8.4, Thm. 8.4.2, p. 298) says that there is a number c with $2<c<6$ such that $f^{\prime}(c)=48$.
b) From the mean value theorem there is a number c in the interval $\langle 13,17\rangle$ such that $f^{\prime}(c)=0$ and then $x=c$ is a stationary point.
Problem 7
(a) $f^{\prime}(x)=\frac{2 x-7}{x^{2}-7 x+13}$
(b) $f^{\prime}(x)=0,07 x e^{0,035 x^{2}}$
(c) $f^{\prime}(x)=\frac{e^{2 x}+2}{\sqrt{e^{2 x}+4 x+5}}$
(d) $f^{\prime}(x)=\frac{(1-x) \ln (1-x)+x}{(1-x)[\ln (1-x)]^{2}}$

Problem 8

B
Problem 9
C
Problem 10
A

