EBA2911 Mathematics for Business Analytics

 autumn 2019Exercises

I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.
R. Lucas

Lecture 13
Sec. 7.1, 6.9, 8.6-7
Implicit differentiation. The second order derivative, convex/concave functions.
Here are recommended exercises from the textbook [SHSC]. - not yet!
Section 7.1 exercise
Section 6.9 exercise
Section 8.6 exercise
Section 8.7 exercise

Problems for the exercise session Wednesday 6 Nov. from 16 o'clock in C2-065

Problem 1 Find an expression for y^{\prime} in terms of y and x by implicit differentiation. Finn all solutions for y with $x=a$ and determine the expression for the tangent function in each of these points.
a) $x^{2}+25 y^{2}-50 y=0$ and $a=4$
b) $x^{3.27} y^{1.09}=1$ and $a=1$
c) $x^{4}-x^{2}+y^{4}=0$ and $a=\frac{\sqrt{2}}{2}$
d) $x^{3}-3 x y+y^{2}=0$ and $a=2$

Problem 2 in figure 1 you see the graphs of the implicit defined curves in Problem 1. Determine the curves and the equations which belong together. Also draw the tangents in Problem 1.

Figure 1: Four implicitly defined curves

Problem 3 Make a sketch of the graphs of two different functions $f(x)$ with the given data. One of the functions should be strictly increasing. Note: You are not supposed two find any algebraic expression!
a) $f^{\prime \prime}(x)$ is negative for $x<5$ and positive for $x>5$
b) $f^{\prime \prime}(x)$ is positive for $x<10$, negative for $10<x<15$ and positive for $x>15$

Problem 4 in figure 2 you see the graph of $f^{\prime \prime}(x)$. Determine if the statement is true or false.

Figure 2: The graph of $f^{\prime \prime}(x)$
a) $f^{\prime \prime}(2.5)>f^{\prime \prime}(4)$
b) $f(x)$ is convex for $3 \leqslant x \leqslant 4$
c) $f(x)$ has no inflection points between 5.5 and 6
d) $f(x)$ has two inflection points for $2 \leqslant x \leqslant 7$
e) $f(x)$ is concave for $6 \leqslant x \leqslant 6.5$
f) $f^{\prime}(4)$ is the maximum of $f^{\prime}(x)$ for $x \in[3,4]$
g) $f^{\prime}(x)$ decreases in the interval $[4,5]$
h) $f^{\prime}(x)$ increases faster around $x=2.5$ than around $x=3$
j) $f^{\prime}(2.5)<f^{\prime}(4.5)$
k) $f(x)$ must have at least one minimum point

Problem 5 In figure 3 you see the graphs of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$ in the same coordinate system. Determine which is the graph of $f(x)$, of $f^{\prime}(x)$ and of $f^{\prime \prime}(x)$ in (a-c).

Figure 3: (a-c): The graphs of $f(x), f^{\prime}(x)$ and $f^{\prime \prime}(x)$

Problem 6 Calculate $f^{\prime}(x)$ and $f^{\prime \prime}(x)$, solve the equation $f^{\prime \prime}(x)=0$, determine where $f(x)$ is convex and concave, and determine the inflection points (if any).
a) $f(x)=x^{4}-8 x^{3}+18 x^{2}+1$
b) $f(x)=\ln \left(x^{2}-2 x+2\right)-\frac{x}{4}+1$
c) $f(x)=e^{\frac{-x^{2}}{2}}+x+1$
d) $f(x)=x^{5}-10 x^{4}+30 x^{3}+2$

Problem 7 Determine the expressions for the tangent functions at the inflection points in Problem 6.

Problem 8 Determine (local) minimum and maximum points for the function $f(x)$. Explain why these points give (global) minimum/maximum for $f(x)$ by using convexity/concavity of the function. Calculate the minimum/maximimum of the function.
a) $f(x)=\ln \left(-x^{2}+14 x-45\right)$ with $D_{f}=\langle 5,9\rangle$
b) $f(x)=\frac{-1}{x(x-6)}$ with $D_{f}=\langle 0,6\rangle$
c) $f(x)=e^{x(x-4)}$ with $D_{f}=\mathbb{R}$ (all real numbers)

Problem 9 Compute the expression for the derivative of $f(x)$.
a) $f(x)=\sqrt{x^{2}-7 x+13}$
b) $f(x)=x e^{0.1 x^{2}}$
c) $f(x)=(2 x+5)^{100}$
d) $f(x)=\frac{\ln (x)}{x}$

Problem 10 (Multiple choice spring 2018, problem 11)
We consider the function $f(x)=4 \sqrt{x} \ln (x)$. Which statement is true?
(A) The function f has one inflection point
(B) The function f has several inflection points
(C) The function f is concave
(D) The function f is convex
(E) I choose not to solve this problem.

Answers

Problem 1

a) $y^{\prime}=\frac{-x}{25(y-1)}$, for $x=4: y=\frac{2}{5}$ or $y=\frac{8}{5}$ which gives the tangent functions $h_{1}(x)=\frac{4}{15} x-\frac{2}{3}$ and $h_{2}(x)=-\frac{4}{15} x+\frac{8}{3}$
b) $y^{\prime}=\frac{-3 y}{x}$, for $x=1$: $y=1$ which gives the tangent function $h(x)=-3 x+4$
c) $y^{\prime}=\frac{x\left(1-2 x^{2}\right)}{2 y^{3}}$, for $x=\frac{\sqrt{2}}{2}: y= \pm \frac{\sqrt{2}}{2}$ which gives the tangent functions $h_{1}(x)=\frac{\sqrt{2}}{2}$ and $h_{2}(x)=-\frac{\sqrt{2}}{2}$
d) $y^{\prime}=\frac{3\left(y-x^{2}\right)}{2 y-3 x}$, for $x=2: y=4$ or $y=2$ which gives the tangent functions $h_{1}(x)=4$ and $h_{2}(x)=3 x-4$

Problem 2

a) Green
b) Blue
c) Red
d) Purple

Problem 3

Compare with other students, ask the learning assistants!

Problem 4

Figure 4: True or false, or opposite

Problem 5

a) $f(x)$: Dark red, $f^{\prime}(x)$: Green
b) $f(x)$: Olive, $f^{\prime}(x)$: Orange
c) $f(x)$: Violet, $f^{\prime}(x)$: Red

Problem 6
a) $f^{\prime}(x)=4 x^{3}-24 x^{2}+36 x$ and $f^{\prime \prime}(x)=12(x-1)(x-3)$. $f^{\prime \prime}(x)=0$ has solutions $x=1$ and $x=3$. $f(x)$ is convex in the interval $\langle\infty, 1], f(x)$ is concave in the interval $[1,3]$, and $f(x)$ is convex in the interval $[3, \infty)$. Hence $x=1$ and $x=3$ are inflection points.
b) $f^{\prime}(x)=\frac{2 x-2}{(x-1)^{2}+1}-\frac{1}{4}$ and $f^{\prime \prime}(x)=\frac{-2 x(x-2)}{\left[(x-1)^{2}+1\right]^{2}} . f^{\prime \prime}(x)=0$ has solutions $x=0$ and $x=2 . f(x)$ is concave in the interval $\langle\infty, 0], f(x)$ is convex in the interval $[0,2]$, and $f(x)$ is concave in the interval $[2, \infty)$. Hence $x=0$ and $x=2$ are inflection points.
c) $f^{\prime}(x)=-x e^{\frac{-x^{2}}{2}}+1$ and $f^{\prime \prime}(x)=(x+1)(x-1) e^{-\frac{x^{2}}{2}}, f^{\prime \prime}(x)=0$ has solutions $x= \pm 1, f(x)$ is convex in the interval $\langle\infty,-1], f(x)$ is concave in the interval $[-1,1]$, and $f(x)$ is convex in the interval $[1, \infty\rangle$. Hence $x=-1$ and $x=1$ are inflection points.
d) $f^{\prime}(x)=5 x^{4}-40 x^{3}+90 x^{2}$ and $f^{\prime \prime}(x)=20 x(x-3)^{2} . f^{\prime \prime}(x)=0$ has solutions $x=0$ and $x=3$ (a double root). $f(x)$ is concave in the interval $\langle\infty, 0]$ and $f(x)$ is convex in the interval $[0, \infty)$. Hence $x=0$ is the only inflection point.

Problem 7

a) Inflection point tangents: $h_{1}(x)=16 x-4$ and $h_{3}(x)=28$
b) Inflection point tangents: $h_{0}(x)=-1.25 x+\ln (2)+1$ and $h_{2}(x)=0.75 x+\ln (2)-1$
c) Inflection point tangents: $h_{-1}(x)=\left(1+e^{-0.5}\right) x+2 e^{-0.5}+1$ and $h_{1}(x)=\left(1-e^{-0.5}\right) x+2 e^{-0.5}+1$
d) Inflection point tangent: $h_{0}(x)=2$

Problem 8

a) $f^{\prime}(x)=\frac{2(7-x)}{-x^{2}+14 x-45}$ which changes sign from + to - at $x=7 . f^{\prime \prime}(x)=\frac{-2\left[(x-7)^{2}+4\right]}{\left(-x^{2}+14 x-45\right)^{2}}$ is negative for all x, so $f(x)$ is concave, max: $f(7)=2 \ln (2)=1.39$
b) $f^{\prime}(x)=\frac{2 x-6}{x^{2}(x-6)^{2}}$ which changes sign from - to + at $x=3$. $f^{\prime \prime}(x)=\frac{-6\left[(x-3)^{2}+3\right]}{x^{3}(x-6)^{3}}$ is positive for all $x \in\langle 0,6\rangle$, so $f(x)$ is convex, min: $f(3)=\frac{1}{9}=0.11$
c) $f^{\prime}(x)=2(x-2) e^{x(x-4)}$ which changes sign from - to + at $x=2$.
$f^{\prime \prime}(x)=4\left[(x-2)^{2}+\frac{1}{2}\right] e^{x(x-4)}$ is positive for all x, so $f(x)$ is convex, min: $f(2)=e^{-4}=0.02$

Problem 9

a) $f^{\prime}(x)=\frac{2 x-7}{2 \sqrt{x^{2}-7 x+13}}$
b) $f^{\prime}(x)=\frac{1}{5}\left(x^{2}+5\right) e^{0.1 x^{2}}$
c) $f^{\prime}(x)=200(2 x+5)^{99}$
d) $f^{\prime}(x)=\frac{1-\ln (x)}{x^{2}}$

Problem 10

A

