I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.

R. Lucas

Lecture 15 Sec. 7.4-6 Linearisation. Taylor polynomials.

Here are recommended exercises from the textbook [SHSC].

Section **7.4** exercise 1-3 Section **7.5** exercise 1-3

Problems for the exercise session Wednesday 20 Nov. from 14 o'clock in B2-085

Problem 1

- a) Determine the Taylor polynomials $P_1(x), \dots, P_4(x)$ of degree 1-4 of the function $f(x) = e^x$ at 0.
- b) Compute $P_1(1), ..., P_4(1)$ and compute how good approximations these values give to f(1) = e. **Problem 2**
- a) Determine the Taylor polynomials $P_1(x), ..., P_4(x)$ of degree 1-4 of the function $f(x) = xe^x$ at 0.
- b) Compute $P_1(1), ..., P_4(1)$ and compute how good approximations these values give to f(1) = e. **Problem 3**
- a) Determine the Taylor polynomials $P_1(x), \dots, P_4(x)$ of degree 1 4 of the function $f(x) = \ln(x)$ at 1.
- b) Compute $P_1(2), ..., P_4(2)$ and compute how good approximations these values give to $f(2) = \ln(2)$.

Problem 4 Determine the Taylor polynomials $P_1(x), ..., P_4(x)$ of degree 1 - 4 of the function $f(x) = x^4$ at 0.

Problem 5 Determine the Taylor polynomials $P_1(x), \dots, P_4(x)$ of degree 1 - 4 of the function $f(x) = \frac{1}{1-x}$ at 0.

Problem 6 Let $P_1(x), \dots, P_4(x)$ be the Taylor polynomials in problem 1. Compute the limit values.

a)
$$\lim_{x \to 0} \frac{e^x - P_1(x)}{x^2}$$
 b) $\lim_{x \to 0} \frac{e^x - P_2(x)}{x^3}$ c) $\lim_{x \to 0} \frac{e^x - P_3(x)}{x^4}$ d) $\lim_{x \to 0} \frac{e^x - P_4(x)}{x^5}$

Problem 7 Let $P_1(x), \dots, P_4(x)$ be the Taylor polynomials in problem 3. Compute the limit values.

a)
$$\lim_{x \to 1} \frac{\ln(x) - P_1(x)}{(x-1)^2}$$
 b) $\lim_{x \to 1} \frac{\ln(x) - P_2(x)}{(x-1)^3}$ c) $\lim_{x \to 1} \frac{\ln(x) - P_3(x)}{(x-1)^4}$ d) $\lim_{x \to 1} \frac{\ln(x) - P_4(x)}{(x-1)^5}$

Problem 8 (Multiple choice exam 2017s, problem 12)

We consider the price elasticity $\varepsilon = \varepsilon(p)$ of a commodity with demand function D(p) = 120 - 8p. Then:

(A) $\varepsilon > -1$ for p = 7,5(B) $\varepsilon > -1$ for p < 7,5

(C) $\varepsilon > -1$ for p > 7,5

(D) $\varepsilon > -1$ for all values of p

(E) I choose not to solve this problem.

Problem 9 (Multiple choice exam 2016a, problem 12)

Demand for a commodity is given as D(p) = 110 - 5p. Then the elasticity $\varepsilon(p) = -1$ for:

- (A) p = 7
- (B) p = 11
- (C) $p = \frac{16}{5}$
- (D) p = 22

(E) I choose not to solve this problem.

Problem 10 (Multiple choice exam 2017s, problem 4) A firm has the cost function $C(x) = 205x^3 - 120x^2 + 2000x + 2800$ when $x \ge 0$. What is the

minimal average unit cost (the cost optimum)?

(A) 2 kr

- (B) 12 kr
- (C) 3980 kr
- (D) 7960 kr
- (E) I choose not to solve this problem.

Problem 11 (Multiple choice exam 2016a, problem 14) We consider the limit value

$$\lim_{x \to \infty} \frac{1 - x \ln(x)}{e^x}$$

What is true?

- (a) The limit value does not exist
- (b) The limit value equals 1
- (c) The limit value equals $-\frac{1}{2}$
- (d) The limit value equals 0
- (e) I choose not to solve this problem.

Problem 12 (Multiple choice exam 2015a, problem 15)

We consider the limit value

$$\lim_{x \to 1} \frac{\ln(x) - x + 1}{x^2 - 2x + 1}$$

What is true?

- (a) The limit value does not exist
- (b) The limit value equals 0
- (c) The limit value equals 1
- (d) The limit value equals $-\frac{1}{2}$
- (e) I choose not to solve this problem.

Fasit

Problem 1

a) $P_1(x) = 1 + x$, $P_2(x) = 1 + x + \frac{x^2}{2}$, $P_3(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6}$, $P_4(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{24}$ b) $P_1(1) = 2$, $P_2(1) = 2.5$, $P_3(1) = \frac{8}{3} \approx 2.67$, $P_4(x) = \frac{65}{24} \approx 2.71$. The distance from f(1) = e equals (approximately): $|f(1) - P_1(1)| = |e - 2| = 0.72$, $|f(1) - P_2(1)| = |e - 2.5| = 0.22$, $|f(1) - P_3(1)| = |e - \frac{8}{3}| = 0,052, |f(1) - P_4(1)| = |e - \frac{65}{24}| = 0,0099$

Problem 2

- a) $P_1(x) = x$, $P_2(x) = x + x^2$, $P_3(x) = x + x^2 + \frac{x^3}{2}$, $P_4(x) = x + x^2 + \frac{x^3}{2} + \frac{x^4}{6}$ b) $P_1(1) = 1$, $P_2(1) = 2$, $P_3(1) = 2$, 5, $P_4(x) = \frac{8}{3} \approx 2$,67. The distance from f(1) = e equals (approximately): $|f(1) - P_1(1)| = |e - 1| = 1,72, |f(1) - P_2(1)| = |e - 2| = 0,72,$ $|f(1) - P_3(1)| = |e - 2,5| = 0,22, |f(1) - P_4(1)| = |e - \frac{8}{3}| = 0,052$

Problem 3

- a) $P_1(x) = (x-1), P_2(x) = (x-1) \frac{(x-1)^2}{2}, P_3(x) = (x-1) \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3}, P_4(x) = (x-1) \frac{(x-1)^2}{2} + \frac{(x-1)^3}{3} \frac{(x-1)^4}{4}$ b) $P_1(2) = 1, P_2(2) = \frac{1}{2}, P_3(1) = \frac{5}{6} \approx 0.83, P_4(x) = \frac{7}{12} \approx 0.58$. The distance from $f(2) = \ln(2)$
- equals (approximately): $|f(2) P_1(2)| = |\ln(2) 1| = 0,31, |f(2) P_2(2)| = |\ln(2) \frac{1}{2}| = 0,19,$ $|f(2) P_3(2)| = |\ln(2) \frac{5}{6}| = 0,14, |f(2) P_4(2)| = |\ln(2) \frac{7}{12}| = 0,11$

Problem 4
$$P_1(x) = 0$$
, $P_2(x) = 0$, $P_3(x) = 0$, $P_4(x) = x^4$

Problem 5 $P_1(x) = 1 + x$, $P_2(x) = 1 + x + x^2$, $P_3(x) = 1 + x + x^2 + x^3$, $P_4(x) = 1 + x + x^2 + x^3 + x^4$ Problem 6

a) This is a $\frac{0}{0}$ -expression. Hence we can use l'Hôpital's rule. Differentiate numerator and denominator. Get another $\frac{0}{0}$ -expression and use l'Hôpital's rule again:

$$\lim_{x \to 0} \frac{e^{x} - (1+x)}{x^{2}} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 0} \frac{e^{x} - 1}{2x} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 0} \frac{e^{x}}{2} = \frac{1}{2}$$

b)

$$\lim_{x \to 0} \frac{e^x - (1 + x + \frac{x^2}{2})}{x^3} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 0} \frac{e^x - (1 + x)}{3x^2} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 0} \frac{e^x - 1}{6x} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 0} \frac{e^x}{6} = \frac{1}{6}$$

c) $\frac{1}{24}$

d) $\frac{1}{120}$

Problem 7

a) This is a $\frac{0}{0}$ -expression. Hence we can use l'Hôpital's rule. Differentiate numerator and denominator. Get another $\frac{0}{0}$ -expression and use l'Hôpital's rule again:

$$\lim_{x \to 1} \frac{\ln(x) - (x-1)}{(x-1)^2} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 1} \frac{\frac{1}{x} - 1}{2(x-1)} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 1} \frac{-\frac{1}{x^2}}{2} = -\frac{1}{2}$$

b)

$$\lim_{x \to 1} \frac{\ln(x) - [(x-1) - \frac{(x-1)^2}{2}]}{(x-1)^3} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 1} \frac{\frac{1}{x} - [1 - (x-1)]}{3(x-1)^2} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 1} \frac{-\frac{1}{x^2} + 1}{6(x-1)} \stackrel{\text{l'Hôp}}{=} \lim_{x \to 1} \frac{\frac{2}{x^3}}{6} = \frac{1}{3}$$

c) $-\frac{1}{4}$ d) $\frac{1}{5}$

Problem 8 (Multiple choice exam 2017s, problem 12) В

Problem 9 (Multiple choice exam 2016a, problem 12) B

Problem 10 (Multiple choice exam 2017s, problem 4) C

Problem 11 (Multiple choice exam 2016a, problem 14) D

Problem 12 (Multiple choice exam 2015a, problem 15) D