EBA2911 Mathematics for Business Analytics

 autumn 2019Exercises

I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.
R. Lucas

Lecture 16

Repetition.

Multiple choice exam 2019 spring
Multiple choice exam 2018 autumn

Problems for the exercise session

Wednesday 20 Nov. from 14 o'clock in B2-085 and
Monday 9 Dec. from 14 o'clock in the Study Area

Problem 1

a) Determine the equation of the ellipse in figure 1. Also determine the centre and the semi-axes for the ellipse.
b) Determine the function expression of the hyperbola in 1 (with asymptotes drawn). Also determine the equations for the asymptotes of the hyperbola.

Figure 1: An ellipse and a hyperbola

Problem 2

a) A curve is given by the solutions of the equation $64 x^{2}+100 y^{2}-256 x+800 y=4544$. Use implicit differentiation to express y^{\prime} in terms of y and x.
b) Determine the points on the curve with $x=8$.
c) Determine the tangent equations of the points in (b).

Problem 3 Determine the inverse function expression $g(x)$ and the domain of definition D_{g} of the function $f(x)$ with domain of definition D_{f}.
a) $f(x)=2 x+5$ with $D_{f}=[3, \infty\rangle$
b) $f(x)=10+\frac{1}{x-2}$ with $D_{f}=\langle 2, \infty\rangle$
c) $f(x)=(x-5)^{3}+2$ with $D_{f}=\mathbb{R}$ (all real numbers)
d)

$$
f(x)= \begin{cases}\frac{18}{x} & \text { if } 0<x \leqslant 6 \\ 4-\frac{x}{6} & \text { if } 6<x \leqslant 45\end{cases}
$$

Problem 4 Determine exact and approximate values in the following problems. We assume continuous compounding.
a) You deposit 50000 into an account. Determine the nominal interest which gives you a balance of 150000 after 15 years.
b) Determine the nominal interest such that the present value of 9 million in 6 years from now is 5 million.
c) You deposit 500000 into an account with $3,9 \%$ nominal interest. Determine how long time it takes before the balance is 1200000 .
d) You consider an investment of 45 million in a project which promises a single payment of 70 million. Suppose the internal rate of return is 10%. Determine when the payment should happen if the deal is balanced (fair).
Problem 5 Solve the inequalities.
a) $3 e^{x} \leqslant 10$
b) $\ln (x-7)>5$
c) $\ln \frac{2 x+5}{x-3}<0$
d) $\frac{e^{x}}{e^{x}-3}<-2$

Problem 6 We have the function $f(x)=x^{3}-4 x^{2}+4 x+3$ with domain of definition $D_{f}=[0,3]$.
a) Determine the stationary points of $f(x)$
b) Determine where $f(x)$ is growing and where $f(x)$ is decreasing
c) Determine the local minimum and maximum points of $f(x)$
d) Determine how many global minimum and maximum points $f(x)$ has and compute maximum and minimum of the function.
e) Determine where $f(x)$ is convex/concave.

Problem 7 Determine the stationary points of $f(x)$. Determine where $f(x)$ is strictly decreasing/increasing. Determine possible local minimum and maximum points.
a) $f(x)=5-\ln \left(x^{2}-10 x+30\right)$
b) $f(x)=e^{x^{3}-12 x}$

Problem 8 We have a function $f(x)=\ln \left(-0,01 x^{2}+0,8 x-12\right)$ with domain of definition $D_{f}=\langle 20,60\rangle$. Determine (local) minimum and maximum points. Explain why the stationary points gives minimum/maximum by applying convexity/concavity of the function. Compute maximum and minimum of the function.

Solutions

Note: There are alternative solutions for many of the problems which are (at least) as good as the ones I have chosen here.

Problem 1

a) The centre of the ellipse is the intersection point of the symmetry lines $x=2$ and $y=-4$, that is $\underline{\underline{(2,-4)}}$. We read off the horizontal semi-axis: $\underline{\underline{10}}$, vertical semi-axis: $\underline{\underline{8}}$. Standard form for the equation of the ellipse is hence $\frac{(x-2)^{2}}{100}+\frac{(y+4)^{2}}{64}=1$.
b) We read off the vertical asymptote: the line $x=-2$, horizontal asymptote: the line $y=10$. The standard form of the function expression for the hyperbola is then $f(x)=10+\frac{a}{x+2}$. We determine a by inserting a point on the graph: $(-3,10,5)$. It gives an equation for a : $10+\frac{a}{-3+2}=10,5$ which has the solution $a=-0,5$. Hence $f(x)=\underline{\underline{10-\frac{0,5}{x+2}}}$

Problem 2

a) We differentiate both sides of the equation by applying the power rule several times and the chain rule on y^{2} [we think of y as a function of x locally on the curve, i.e. $y=y(x)$, but we don't need any expression for $y(x)]$. Then we get $128 x+200 y \cdot y^{\prime}-256+800 y^{\prime}=0$ which gives the equation $200(y+4) y^{\prime}=128(2-x)$, that is $y^{\prime}=0,64 \cdot \frac{2-x}{y+4}$
b) With $x=8$ we get the equation $64^{2}+100 y^{2}-256 \cdot 8+800 y=4544$, i.e. $y^{2}+8 y=24,96$. We complete the square: $(y+4)^{2}=24,96+16=40,96$. It gives $y=-4 \pm 6,4$, i.e. $y=-10,4$ or $y=2,4$ which gives the points $\underline{\underline{P=(8,-10,4)}}$ and $\underline{\underline{Q=(8,2,4)}}$
c) For P : We insert $x=8$ and $y=-10,4$ into the expression for y^{\prime} from (a):
$y^{\prime}=0,64 \cdot \frac{2-8}{-10,4+4}=0,6$. The point-slope formula gives $p(x)-(-10,4)=0,6(x-8)$, i.e.
$p(x)=0,6 x-15,2$ (exact answer)
For $Q: y^{\prime}=0,64 \cdot \frac{2-8}{2,4+4}=-0,6$. The point-slope formula gives $q(x)-2,4=-0,6(x-8)$, dvs $q(x)=-0,6 x+7,2$ (exact answer)
Note: The curve is given in Problem 1a, but you don't have to know this to solve Problem 2.

Problem 3

a) To determine the expression $g(x)$ for the inverse function we put $y=2 x+5$ and solve the equation for x. It gives $x=0,5 y-2,5$. Then we change the variables and get $g(x)=0,5 x-2,5$. As always with the inverse function $D_{g}=R_{f}$. To determine the range of $f(x)$ we see that $f(x)$ is an increasing (and linear) function with minimum value $f(3)=11$ and which attains all larger numbers as x increases, that is $R_{f}=[11, \infty\rangle$ and hence $\underline{\underline{D_{g}}=[11, \infty\rangle}$
b) We solve the equation $y=10+\frac{1}{x-2}$ for x. Get $x=2+\frac{1}{y-10}$. Changes variables and get the expression $g(x)=2+\frac{1}{x-10}$ for the inverse function. $f(x)$ is a hyperbola with the line $x=2$ as vertical asymptote, which is strictly decreasing for $x>2$, and which has the line $y=10$ as horizontal asymptote. Then $R_{f}=\langle 10, \infty\rangle$ and $\underline{\underline{D_{g}=\langle 10, \infty\rangle}}$
c) We solve the equation $y=(x-5)^{3}+2$ for x and get $x=5+(y-2)^{\frac{1}{3}}$. Then $\underline{\underline{g(x)}=5+(x-2)^{\frac{1}{3}}}$ is the expression for the inverse the function. Because $y=f(x)$ becomes as negative as you want by choosing sufficiently large negative x, and $y=f(x)$ becomes as positive as you want by choosing large positive x, we get $R_{f}=\mathbb{R}$. Hence $\underline{\underline{D_{g}=\mathbb{R}}}$
d) We consider $f(x)$ as consisting of two different functions with separate domains of definition and do as in (a-c) for each of them. It gives $g(x)= \begin{cases}\frac{18}{x} & \text { if } x \geqslant 3 \\ 24-6 x & \text { if }-\frac{21}{6} \leqslant x<3\end{cases}$

Problem 4

a) Let r be the nominal interest. The annual growth factor is then e^{r} and we obtain the equation $50000 \cdot e^{15 r}=150000$ which gives the equation $e^{15 r}=3$. We put the left and right hand side and into $\ln (x)$ and get the equation $15 r=\ln (3)$ with the solution $r=\frac{\ln 3}{15}=7,32 \%$
b) Let r be the nominal interest. The present value of 9 million is then (in millions) $\frac{9}{e^{6 r}}$ which is assumed to be 5 million. We get the equation $\frac{9}{e^{6 r}}=5$, i.e. $e^{6 r}=\frac{9}{5}$. Insert the left and the right hand side into $\ln (x)$ and get $6 r=\ln \left(\frac{9}{5}\right)=\ln (9)-\ln (5)$, i.e $r=\frac{\ln 9-\ln 5}{6}=9,80 \%$
c) We put $x=$ number of years the money has to be deposited. Then we get the equation $500000 \cdot e^{0,039 x}=1200000$, i.e $e^{0,039 x}=\frac{12}{5}$. Insert the left and the right hand side into $\ln (x)$. We get that the money has to be deposited in $x=\frac{\ln 12-\ln 5}{0,039}=22,45$ years
d) We put $x=$ the number of years between the investment and the payment. The annual growth factor is 1,1 and hence we get the equation $45 \cdot 1,1^{x}=70$, i.e. $1,1^{x}=\frac{70}{45}$. Insert the left and the right hand side into e^{x} and get $x \cdot \ln (1,1)=\ln 70-\ln 45$. Hence the payment has to occur $\xlongequal{\frac{\ln 70-\ln 45}{\ln (1,1)}=4,64}$ years after the investment.

Problem 5

a) We insert the left and the right hand side of the inequality $e^{x} \leqslant \frac{10}{3}$ into $\ln (x)$ and get $x \leqslant \ln (10)-\ln (3)$
b) We insert the left and the right hand side of the inequality into e^{x} and get the inequality $x-7>e^{5}$ which gives $\underline{\underline{x}>7+e^{5}}$
c) We insert the left and the right hand side of the inequality into e^{x} and get the inequality $\frac{2 x+5}{x-3}<1$, i.e $\frac{2 x+5}{x-3}-1<0$, i.e. $\frac{x+8}{x-3}<0$. Now we use a sign diagram and get $\underline{x \in\langle-8,3\rangle}$
d) We can put $u=e^{x}$ and solve the inequality $\frac{u}{u-3}<-2$, i.e. $\frac{u}{u-3}+2<0$, i.e. $\frac{3(u-2)}{u-3}<0$. Now we use a sign diagram and get $e^{x}=u \in\langle 2,3\rangle$, that is $x \in\langle\ln (2), \ln (3)\rangle$.

Problem 6

a) The stationary points are the solutions of the equation $f^{\prime}(x)=0$ with $0 \leqslant x \leqslant 3$. We compute $f^{\prime}(x)=3 x^{2}-8 x+4$. The equation $3 x^{2}-8 x+4=0$ has the solutions $\underline{\underline{x=\frac{2}{3}}}, \underline{\underline{x=2}}$ which both are contained in D_{f}.
b) We have $f^{\prime}(x)>0$ for $x<\frac{2}{3}$ and for $x>2$, and $f^{\prime}(x)<0$ for $\frac{2}{3}<x<2$. Then $f(x)$ is increasing for x in [0, $\left.\frac{2}{3}\right]$, decreasing for x in [年,2] and increasing for x in [2, 3].
c) Since there are no cusp points for $f(x)$, the local minimum/maximum points of $f(x)$ are either stationary points or end points. From (6b) we get that $\underline{\underline{x}=0}$ and $\underline{\underline{x}=2}$ are local minimum points while $\underline{\underline{x=\frac{2}{3}}}$ and $\underline{\underline{x=3}}$ are local maximum points.
d) To find the global extremal points we calculate $f(0)=3$ and $f(2)=3$ which hence gives that both $\underline{\underline{x=0}}$ and $\underline{\underline{x=2}}$ are global minimum points. Because $f\left(\frac{2}{3}\right)=4,19$ while $f(3)=6, \underline{x=3}$ is the only global maximum point. Minimum of the function is hence $f(0)=f(2)=\underline{\underline{3}}$ while maximum is $f(3)=\underline{6}$.
e) We compute $f^{\prime \prime}(x)=6 x-8$. $f(x)$ is concave for those x such that $f^{\prime \prime}(x) \leqslant 0$, i.e. $6 x-8 \leqslant 0$, i.e $x \leqslant \frac{4}{3} . f(x)$ is convex for those x such that $f^{\prime \prime}(x) \geqslant 0$, i.e. $x \geqslant \frac{4}{3}$.

Problem 7

a) We use the chain rule with $u(x)=x^{2}-10 x+30, g(u)=5-\ln (u), u^{\prime}(x)=2 x-10=2(x-5)$, $g^{\prime}(u)=-\frac{1}{u}$ which gives $f^{\prime}(x)=-\frac{2(x-5)}{x^{2}-10 x+30}$. Because $x=5$ is not a root in the denominator the quotient cannot be simplified. We solve the equation $f^{\prime}(x)=0$, i.e. $2(x-5)=0$, i.e. $\underline{x=5}$ is the only stationary point. We complete the square $x^{2}-10 x+30=(x-5)^{2}+5$ which always is $\geqslant 5$. Hence we see that $f^{\prime}(x)$ is larger than 0 for $x<5$ and $f^{\prime}(x)$ is smaller than 0 for $x>5$. Hence $f(x)$ is strictly increasing in the interval $\langle-\infty, 5]$ and strictly decreasing in the interval $[5, \infty)$ and $\underline{\underline{x=5}}$ is a global maximum point.
b) We use the chain rule with $u(x)=x^{3}-12 x, g(u)=3 e^{u}, u^{\prime}(x)=3 x^{2}-12=3\left(x^{2}-4\right)$ and $g^{\prime}(u)=3 e^{u}$ which gives $f^{\prime}(x)=3\left(x^{2}-4\right) e^{x^{3}-12 x}$. Then we solve the equation $f^{\prime}(x)=0$, i.e. $3\left(x^{2}-4\right) e^{x^{3}-12 x}=0$. We have $3 e^{u}>0$ and hence we get the equation $x^{2}-4=0$, i.e. $\underline{\underline{x=}}$ are the only stationary points of $f(x)$. We also get the factorisation $f^{\prime}(x)=3(x+2)(x-2) e^{x^{3}-12 x}$. We then see (e.g. by use of a sign diagram) that $f^{\prime}(x)$ is negative for x in $\langle-2,2\rangle$ and positive for x in $\langle-\infty,-2\rangle \cup\langle 2, \infty\rangle$. Hence $f(x)$ is strictly increasing in the interval $\underline{\underline{\langle-\infty},-2]}$ and in the interval $\underline{\underline{[2, \infty\rangle}}$, and is strictly decreasing in the interval $\underline{\underline{[-2,2]}}$. Hence $\underline{\underline{x=-2}}$ is a local maximum point and $\underline{\underline{x=2}}$ is a local minimum point.

Problem 8 We use the chain rule with
$u(x)=-0,01 x^{2}+0,8 x-12=-0,01\left(x^{2}-80 x+1200\right)=-0,01(x-20)(x-60), g(u)=\ln (u)$, $u^{\prime}(x)=-0,02 x+0,8=-0,02(x-40), g^{\prime}(u)=\frac{1}{u}$. Then $f^{\prime}(x)=\frac{-0,02(x-40)}{-0,01(x-20)(x-60)}=\frac{2(x-40)}{(x-20)(x-60)}$. The equation $f^{\prime}(x)=0$ gives $2(x-40)=0$ and hence $\underline{\underline{x=40}}$ is the only stationary point for $f(x)$.
By using a sign diagram we see that $f^{\prime}(x)$ is positive for $20<x<40$ and negative for $40<x<60$. Hence $f(x)$ is strictly increasing in the interval $\langle 20,40]$ and strictly decreasing in the interval [40, 60). Hence $x=40$ is a local (and global) maximum point. To determine the curvature of the function we compute $f^{\prime \prime}(x)$. By using the quotient rule we get $f^{\prime \prime}(x)=\frac{-2\left(x^{2}-80+2000\right)}{(x-20)^{2}(x-60)^{2}}$. By completing the square we get $x^{2}-80+2000=(x-40)^{2}+400$ which is greater or equal to 400 for all x. Hence we have that $f^{\prime \prime}(x)$ er negative in the whole interval $\langle 20,60\rangle$ and hence $f(x)$ is concave in the entire domain of definition. Then we conclude that the stationary point $x=40$ is a global maximum point and maximum is $\underline{\underline{f(40)}=2 \ln (2)}$.

