I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.

R. Lucas

# Lecture 16 Repetition.

Multiple choice exam 2019 spring Multiple choice exam 2018 autumn

# Problems for the exercise session Wednesday 20 Nov. from 14 o'clock in B2-085 and Monday 9 Dec. from 14 o'clock in the Study Area

# Problem 1

- a) Determine the equation of the ellipse in figure 1. Also determine the centre and the semi-axes for the ellipse.
- b) Determine the function expression of the hyperbola in 1 (with asymptotes drawn). Also determine the equations for the asymptotes of the hyperbola.



Figure 1: An ellipse and a hyperbola

### Problem 2

- a) A curve is given by the solutions of the equation  $64x^2 + 100y^2 256x + 800y = 4544$ . Use implicit differentiation to express y' in terms of y and x.
- b) Determine the points on the curve with x = 8.
- c) Determine the tangent equations of the points in (b).

**Problem 3** Determine the inverse function expression g(x) and the domain of definition  $D_g$  of the function f(x) with domain of definition  $D_f$ .

a) f(x) = 2x + 5 with  $D_f = [3, \infty)$  b)  $f(x) = 10 + \frac{1}{x-2}$  with  $D_f = \langle 2, \infty \rangle$ c)  $f(x) = (x-5)^3 + 2$  with  $D_f = \mathbb{R}$  (all real numbers) d)

$$f(x) = \begin{cases} \frac{18}{x} & \text{if } 0 < x \le 6\\ 4 - \frac{x}{6} & \text{if } 6 < x \le 45 \end{cases}$$

**Problem 4** Determine exact and approximate values in the following problems. We assume continuous compounding.

- a) You deposit 50 000 into an account. Determine the nominal interest which gives you a balance of 150 000 after 15 years.
- b) Determine the nominal interest such that the present value of 9 million in 6 years from now is 5 million.
- c) You deposit 500 000 into an account with 3,9% nominal interest. Determine how long time it takes before the balance is 1 200 000.
- d) You consider an investment of 45 million in a project which promises a single payment of 70 million. Suppose the internal rate of return is 10%. Determine when the payment should happen if the deal is balanced (fair).

**Problem 5** Solve the inequalities.

a)  $3e^x \le 10$  b)  $\ln(x-7) > 5$  c)  $\ln \frac{2x+5}{x-3} < 0$  d)  $\frac{e^x}{e^x-3} < -2$ 

**Problem 6** We have the function  $f(x) = x^3 - 4x^2 + 4x + 3$  with domain of definition  $D_f = [0, 3]$ . a) Determine the stationary points of f(x)

- b) Determine where f(x) is growing and where f(x) is decreasing
- c) Determine the local minimum and maximum points of f(x)
- d) Determine how many global minimum and maximum points f(x) has and compute maximum and minimum of the function.
- e) Determine where f(x) is convex/concave.

**Problem 7** Determine the stationary points of f(x). Determine where f(x) is strictly decreasing/increasing. Determine possible local minimum and maximum points.

a) 
$$f(x) = 5 - \ln(x^2 - 10x + 30)$$
 b)  $f(x) = e^{x^3 - 12x}$ 

**Problem 8** We have a function  $f(x) = \ln(-0.01x^2 + 0.8x - 12)$  with domain of definition  $D_f = \langle 20, 60 \rangle$ . Determine (local) minimum and maximum points. Explain why the stationary points gives minimum/maximum by applying convexity/concavity of the function. Compute maximum and minimum of the function.

# **Solutions**

Note: There are alternative solutions for many of the problems which are (at least) as good as the ones I have chosen here.

### Problem 1

a) The centre of the ellipse is the intersection point of the symmetry lines x = 2 and y = -4, that is (2, -4). We read off the horizontal semi-axis: <u>10</u>, vertical semi-axis: <u>8</u>. Standard form for the

equation of the ellipse is hence  $\frac{(x-2)^2}{100} + \frac{(y+4)^2}{64} = 1.$ 

b) We read off the vertical asymptote: the line x = -2, horizontal asymptote: the line y = 10. The standard form of the function expression for the hyperbola is then  $f(x) = 10 + \frac{a}{x+2}$ . We determine *a* by inserting a point on the graph: (-3, 10,5). It gives an equation for *a*:  $10 + \frac{a}{-3+2} = 10,5$  which has the solution a = -0,5. Hence  $f(x) = \frac{10 - \frac{0,5}{x+2}}{10 + \frac{a}{x+2}}$ .

# Problem 2

- a) We differentiate both sides of the equation by applying the power rule several times and the chain rule on  $y^2$  [we think of y as a function of x locally on the curve, i.e. y = y(x), but we don't need any expression for y(x)]. Then we get  $128x + 200y \cdot y' 256 + 800y' = 0$  which gives the equation 200(y+4)y' = 128(2-x), that is  $y' = 0.64 \cdot \frac{2-x}{y+4}$
- b) With x = 8 we get the equation  $64^2 + 100y^2 256 \cdot 8 + 800y = 4544$ , i.e.  $y^2 + 8y = 24,96$ . We complete the square:  $(y + 4)^2 = 24,96 + 16 = 40,96$ . It gives  $y = -4 \pm 6,4$ , i.e. y = -10,4 or y = 2,4 which gives the points  $\underline{P} = (8, -10,4)$  and  $\underline{Q} = (8, 2,4)$

c) For *P*: We insert x = 8 and y = -10,4 into the expression for y' from (a):  $y' = 0,64 \cdot \frac{2-8}{-10,4+4} = 0,6$ . The point-slope formula gives p(x) - (-10,4) = 0,6(x-8), i.e.  $\underline{p(x) = 0,6x - 15,2}$  (exact answer)

For *Q*:  $y' = 0.64 \cdot \frac{2-8}{2.4+4} = -0.6$ . The point-slope formula gives q(x) - 2.4 = -0.6(x - 8), dvs q(x) = -0.6x + 7.2 (exact answer)

Note: The curve is given in Problem 1a, but you don't have to know this to solve Problem 2.

#### Problem 3

- a) To determine the expression g(x) for the inverse function we put y = 2x + 5 and solve the equation for x. It gives x = 0,5y 2,5. Then we change the variables and get g(x) = 0,5x 2,5. As always with the inverse function  $D_g = R_f$ . To determine the range of f(x) we see that f(x) is an increasing (and linear) function with minimum value f(3) = 11 and which attains all larger numbers as x increases, that is  $R_f = [11, \infty)$  and hence  $D_g = [11, \infty)$
- b) We solve the equation  $y = 10 + \frac{1}{x-2}$  for x. Get  $x = 2 + \frac{1}{y-10}$ . Changes variables and get the expression  $\underline{g(x)} = 2 + \frac{1}{x-10}$  for the inverse function. f(x) is a hyperbola with the line x = 2 as vertical asymptote, which is strictly decreasing for x > 2, and which has the line y = 10 as horizontal asymptote. Then  $R_f = \langle 10, \infty \rangle$  and  $D_g = \langle 10, \infty \rangle$
- c) We solve the equation  $y = (x-5)^3 + 2$  for x and get  $x = 5 + (y-2)^{\frac{1}{3}}$ . Then  $g(x) = 5 + (x-2)^{\frac{1}{3}}$  is the expression for the inverse the function. Because y = f(x) becomes as negative as you want by choosing sufficiently large negative x, and y = f(x) becomes as positive as you want by choosing large positive x, we get  $R_f = \mathbb{R}$ . Hence  $D_g = \mathbb{R}$
- d) We consider f(x) as consisting of two different functions with separate domains of definition and do as in (a-c) for each of them. It gives  $g(x) = \begin{cases} \frac{18}{x} & \text{if } x \ge 3\\ 24 - 6x & \text{if } -\frac{21}{6} \le x < 3 \end{cases}$

#### Problem 4

- a) Let *r* be the nominal interest. The annual growth factor is then  $e^r$  and we obtain the equation  $50\,000 \cdot e^{15r} = 150\,000$  which gives the equation  $e^{15r} = 3$ . We put the left and right hand side and into  $\ln(x)$  and get the equation  $15r = \ln(3)$  with the solution  $r = \frac{\ln 3}{15} = 7,32\%$
- b) Let *r* be the nominal interest. The present value of 9 million is then (in millions)  $\frac{9}{e^{6r}}$  which is assumed to be 5 million. We get the equation  $\frac{9}{e^{6r}} = 5$ , i.e.  $e^{6r} = \frac{9}{5}$ . Insert the left and the right hand side into  $\ln(x)$  and get  $6r = \ln(\frac{9}{5}) = \ln(9) \ln(5)$ , i.e  $r = \frac{\ln 9 \ln 5}{6} = 9,80\%$
- c) We put x = number of years the money has to be deposited. Then we get the equation  $500\ 000 \cdot e^{0.039x} = 1\ 200\ 000$ , i.e  $e^{0.039x} = \frac{12}{5}$ . Insert the left and the right hand side into  $\ln(x)$ . We get that the money has to be deposited in  $x = \frac{\ln 12 \ln 5}{0.039} = 22.45$  years
- d) We put x = the number of years between the investment and the payment. The annual growth factor is 1,1 and hence we get the equation  $45 \cdot 1, 1^x = 70$ , i.e.  $1, 1^x = \frac{70}{45}$ . Insert the left and the right hand side into  $e^x$  and get  $x \cdot \ln(1,1) = \ln 70 \ln 45$ . Hence the payment has to occur  $\frac{\ln 70 \ln 45}{\ln(1,1)} = 4,64$  years after the investment.

#### Problem 5

- a) We insert the left and the right hand side of the inequality  $e^x \le \frac{10}{3}$  into  $\ln(x)$  and get  $x \le \ln(10) \ln(3)$
- b) We insert the left and the right hand side of the inequality into  $e^x$  and get the inequality  $x 7 > e^5$  which gives  $x > 7 + e^5$
- c) We insert the left and the right hand side of the inequality into  $e^x$  and get the inequality  $\frac{2x+5}{x-3} < 1$ , i.e.  $\frac{2x+5}{x-3} 1 < 0$ , i.e.  $\frac{x+8}{x-3} < 0$ . Now we use a sign diagram and get  $\underline{x \in \langle -8, 3 \rangle}$

d) We can put  $u = e^x$  and solve the inequality  $\frac{u}{u-3} < -2$ , i.e.  $\frac{u}{u-3} + 2 < 0$ , i.e.  $\frac{3(u-2)}{u-3} < 0$ . Now we use a sign diagram and get  $e^x = u \in \langle 2, 3 \rangle$ , that is  $x \in \langle \ln(2), \ln(3) \rangle$ .

## Problem 6

- a) The stationary points are the solutions of the equation f'(x) = 0 with  $0 \le x \le 3$ . We compute  $f'(x) = 3x^2 8x + 4$ . The equation  $3x^2 8x + 4 = 0$  has the solutions  $x = \frac{2}{3}$ , x = 2 which both are contained in  $D_f$ .
- b) We have f'(x) > 0 for  $x < \frac{2}{3}$  and for x > 2, and f'(x) < 0 for  $\frac{2}{3} < x < 2$ . Then f(x) is increasing for x in  $[0, \frac{2}{3}]$ , decreasing for x in  $[\frac{2}{3}, 2]$  and increasing for x in [2, 3].
- c) Since there are no cusp points for f(x), the local minimum/maximum points of f(x) are either stationary points or end points. From (6b) we get that  $\underline{x = 0}$  and  $\underline{x = 2}$  are local minimum points while  $x = \frac{2}{3}$  and  $\underline{x = 3}$  are local maximum points.
- d) To find the global extremal points we calculate f(0) = 3 and f(2) = 3 which hence gives that both <u>x = 0</u> and <u>x = 2</u> are global minimum points. Because f(<sup>2</sup>/<sub>3</sub>) = 4,19 while f(3) = 6, <u>x = 3</u> is the only global maximum point. Minimum of the function is hence f(0) = f(2) = <u>3</u> while maximum is f(3) = <u>6</u>.
- e) We compute f''(x) = 6x 8. f(x) is concave for those x such that  $f''(x) \le 0$ , i.e.  $6x 8 \le 0$ , i.e.  $x \le \frac{4}{3}$ . f(x) is convex for those x such that  $f''(x) \ge 0$ , i.e.  $x \ge \frac{4}{3}$ .

# Problem 7

a) We use the chain rule with  $u(x) = x^2 - 10x + 30$ ,  $g(u) = 5 - \ln(u)$ , u'(x) = 2x - 10 = 2(x - 5),  $g'(u) = -\frac{1}{u}$  which gives  $f'(x) = -\frac{2(x-5)}{x^2 - 10x + 30}$ . Because x = 5 is not a root in the denominator the quotient cannot be simplified. We solve the equation f'(x) = 0, i.e. 2(x - 5) = 0, i.e. x = 5 is the only stationary point. We complete the square  $x^2 - 10x + 30 = (x - 5)^2 + 5$  which always is  $\ge 5$ . Hence we see that f'(x) is larger than 0 for x < 5 and f'(x) is smaller than 0 for x > 5. Hence f(x) is strictly increasing in the interval  $(-\infty, 5]$  and strictly decreasing in the interval

 $[5, \infty)$  and  $\underline{x=5}$  is a global maximum point.

b) We use the chain rule with  $u(x) = x^3 - 12x$ ,  $g(u) = 3e^u$ ,  $u'(x) = 3x^2 - 12 = 3(x^2 - 4)$  and  $g'(u) = 3e^u$  which gives  $f'(x) = 3(x^2 - 4)e^{x^3 - 12x}$ . Then we solve the equation f'(x) = 0, i.e.  $3(x^2 - 4)e^{x^3 - 12x} = 0$ . We have  $3e^u > 0$  and hence we get the equation  $x^2 - 4 = 0$ , i.e.  $x = \pm 2$  are the only stationary points of f(x). We also get the factorisation  $f'(x) = 3(x + 2)(x - 2)e^{x^3 - 12x}$ . We then see (e.g. by use of a sign diagram) that f'(x) is negative for x in  $\langle -2, 2 \rangle$  and positive for x in  $\langle -\infty, -2 \rangle \cup \langle 2, \infty \rangle$ . Hence f(x) is strictly increasing in the interval  $(-\infty, -2]$  and in the interval  $[2, \infty)$ , and is strictly decreasing in the interval (-2, 2]. Hence x = -2 is a local maximum point and x = 2 is a local minimum point.

# Problem 8 We use the chain rule with

 $u(x) = -0,01x^{2} + 0,8x - 12 = -0,01(x^{2} - 80x + 1200) = -0,01(x - 20)(x - 60), g(u) = \ln(u),$   $u'(x) = -0,02x + 0,8 = -0,02(x - 40), g'(u) = \frac{1}{u}. \text{ Then } f'(x) = \frac{-0,02(x - 40)}{-0,01(x - 20)(x - 60)} = \frac{2(x - 40)}{(x - 20)(x - 60)}.$ The equation f'(x) = 0 gives 2(x - 40) = 0 and hence  $\underline{x} = \underline{40}$  is the only stationary point for f(x). By using a sign diagram we see that f'(x) is positive for 20 < x < 40 and negative for 40 < x < 60. Hence f(x) is strictly increasing in the interval  $\langle 20, 40 \rangle$  and strictly decreasing in the interval  $[40, 60\rangle$ . Hence  $\underline{x} = \underline{40}$  is a local (and global) maximum point. To determine the curvature of the function we compute f''(x). By using the quotient rule we get  $f''(x) = \frac{-2(x^{2}-80+2000)}{(x-20)^{2}(x-60)^{2}}$ . By

completing the square we get  $x^2 - 80 + 2000 = (x - 40)^2 + 400$  which is greater or equal to 400 for all *x*. Hence we have that f''(x) er negative in the whole interval  $\langle 20, 60 \rangle$  and hence f(x) is concave in the entire domain of definition. Then we conclude that the stationary point x = 40 is a global maximum point and maximum is  $f(40) = 2\ln(2)$ .