Key Problems

Problem 1.

Solve the systems of equations:

a)
$$2x + 3y = 14$$

 $7x - 4y = 20$
b) $x^2 + y^2 = 20$
 $x - y = 2$
c) $x - 2y = 6$
 $xy = -4$
d) $x^2 - y^2 = 8$
 $xy = 3$

Problem 2.

Solve the equation ax = b when

a) a = b = 1 b) a = 1, b = 0 c) a = 0, b = 1 d) a = b = 0

Problem 3.

Solve the systems of equations:

a)
$$x + y + z = 4$$

 $x + 2y + 4z = 9$
 $x + 3y + 9z = 16$
b) $x - y + z = 3$
 $2x - 4y + z = 1$
 $3x - 5y + 2z = 4$

Problem 4.

Use Gaussian elimination to solve the linear systems:

	x	+	y	+	z	=	11		x	+	y	+	z	=	6
a)	x	+	2y	+	4z	=	22	b)	x	+	2y	+	4z	=	16
	x	_	y	+	z	=	1		x	+	3y	+	9z	=	20

Problem 5.

Use Gaussian elimination to solve the linear systems. How many solutions are there?

			9		1				9		-		x	+	y	+	z	=	11
`	x	+	3y	=	1	- \	x	+	3y	=	(、 、	x	_	\overline{u}	+	z	=	9
a)	x	_	y	=	9	<i>b</i>)	x	_	y	=	3	c)	2x	+	3u	+	5z	_	44
	2x	+	2y	=	3		2x	+	2y	=	10		$\frac{2\pi}{3x}$	_	09 11	+	$\frac{3}{2z}$	_	45

Problem 6.

Use Gaussian elimination to solve the linear systems. How many solutions are there?

	x	+	2y	+	3z	=	4		3x	+	4y	+	3z	=	2
a)	-x	—	y	+	z	=	1	b)	2x	—	y	+	z	=	1
	3x	+	4y	+	z	=	2		7x	+	2y	+	5z	=	3

Problem 7.

Use Gaussian elimination to solve the linear system. How many solutions are there?

x	+	y	+	z	+	w	=	10
x	+	2y	+	4z	—	w	=	$\overline{7}$
x	_	y	+	z	+	11w	=	16

Problem 8.

A linear system is called *homogeneous* if all constant terms are zero. How many solutions does a homogeneous linear system with three equations and five variables have?

Problem 9.

Solve the system of equations:

$$2xy + y3 + y2 = 0$$
$$x2 + 3xy2 + 2xy = 0$$

Problem 10.

Optional: Problems from [Eriksen] (norwegian textbook) Problem 6.1.1 - 6.1.6, 6.2.1 - 6.2.5, 6.3.1 - 6.3.7 (textbook)

Answers to Key Problems

Problem 1.

a) (x,y) = (4,2)b) (x,y) = (4,2), (-2, -4)c) (x,y) = (2, -2), (4, -1)d) (x,y = (3,1), (-3, -1)

Problem 2.

a) x = 1

-

v — 1

b) x = 0

c) no solutions

d) all values of x are solutions

Problem 3.

a) (x,y,z) = (1,2,1) b) (x,y,z) = (-z/2 + 1/2, z/2 - 5/2, z) where z is a free variable

Problem 4.

a) (x,y,z) = (4,5,2) b) (x,y,z) = (-10,19,-3)

Problem 5.

a) No solutions b) One solution (x,y) = (4,1) c) No solutions

Problem 6.

a) Infinitely man solutions (x,y,z) = (-6 + 5z, 5 - 4z, z) with z free b) No solutions

Problem 7.

Infinitely man solutions (x,y,z) = (13 - 5w, -3 + 5w, -w, w) with w free

Problem 8. Infinitely many solutions.

Problem 9.

Solutions: (x,y) = (0,0), (0, -1), (3/25, -3/5)