... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.

R. Lucas

Lecture 5

Sec. 3.1-3, 4.7

Infinite geometric series and limits. Euler's number and continuous compounding of interest.

Here are recommended exercises from the textbook [SHSC].

Section **3.1** exercise 1-5 Section **3.2** exercise 2a-c, e, 4a, 5a, c Section **3.3** exercise 1, 2, 6 Repetition: Multiple choice exam 2017h, problem 1-4 Multiple choice exam 2018v, problem 1, 2 and 4

Problems for the exercise session

Wednesday 11 Sept. from 14 o'clock in B2-085

Problem 1 Solve the linear equations for *x*.

a) $3x - 5 = 0$	b) $ax + b = 0$	c) $cx + 50 - c = 0 \ (c \neq 0)$
d) $-4x + 9 = 3 - 0,25x$	e) $ax + b = cx + d$	f) $\frac{x}{4} + 11 - k = 3 - \frac{x}{3}$
g) $22 - 4x + 9 - 2(x + 7) = 14$	-5(x+2)+x-23	h) $k - bx - d(3 - 5x) + 11 = c$
i) $\frac{a+1}{a-1}x + 11 - b = 3 - \frac{b}{3} - cx$	j) $\frac{4}{x-2} = \frac{3}{2x+1}$	k) $\frac{5-x}{x-a} = 7$
l) $\frac{6}{3x+6} = \frac{14}{2x+4}$	m) $5 - 7x = 4x + 29 - 11x$	n) $3(x+1) = 3x+3$

Problem 2 Solve the quadratic equations.

a)
$$x^2 = 0$$

b) $x^2 = 1$
c) $x^2 = -1$
d) $(x-3)^2 = 0$
e) $(x+3)^2 = 1$
f) $(x+3)^2 = -1$
g) $x^2 - 6x + 9 = 0$
h) $x^2 - 6x + 9 = 1$
i) $(3x-1)^2 = 0$
k) $(3x-1)^2 = 9$
l) $(3x-1)^2 = -9$
m) $9x^2 - 6x + 1 = 0$
n) $9x^2 - 6x + 1 = 9$
o) $9x^2 - 6x + 1 = -9$
p) $(x-2)(x+3) = 0$
r) $(x-2)(x+3) = 0$
t) $2x^2 + 4x = 70$
u) $x(x-8) = 90 - x^2$

Problem 3 Determine the quadratic equation $x^2 + bx + c = 0$ with the given solutions.

a) $x = 1, x = -1$	b) $x = 3, x = -2$	c) $x = -3, x = -8$
d) $x = 17, x = -3$	e) $x = 3 \pm \sqrt{5}$	f) $x = -11$

Problem 4 Solve the quadratic equations by completing the square.

a) $x^2 - 8x = -12$	b) $x^2 + 10x = -9$	c) $x^2 - 5x - 14 = 0$
d) $x^2 - 3x = 4$	e) $x^2 - 24x = 25$	f) $x^2 + 5x = 6$

Problem 5

a) Determine *k* such that the equation $x^2 - 10x = k$ has exactly one solution.

- b) Bestem *k* such that the equation $x^2 kx = -9$ has exactly one solution.
- c) Bestem k such that the equation $\frac{1}{k}x^2 14x = 12$ has exactly one solution.

Problem 6 Write the quadratic expression as a product of two linear (grade 1) polynomials.

a) $x^2 - 8x + 12$	b) $x^2 + 10x + 9$	c) $x^2 - 18x + 81$
d) $2x^2 - 4x - 70$	e) $3x^2 + 24x - 99$	f) $5x^2 + 60x + 180$

Problem 7

- a) Use one parameter to write an expression for all polynomials on the form $x^2 + bx + c$ which have two zeros of distance 1 from each other.
- b) Use one parameter to write an expression for all third degree polynomials on the form $x^{3} + ax^{2} + bx + c$ which have three zeros with the middle one of distance 5 to each of the other two.
- c) Use two parameters to write up all quadratic polynomials with exactly one zero.

Problem 8 Solve the equations for *x*.

- a) $(2x \sqrt{3})(x^2 20x + 99) = 0$
- b) $(x^2-5)(x^2-6x+4)=0$
- c) $(2x^2 28x + 98)(x^2 6x + 10)(x^2 2x 6) = 0$
- d) $(x+1)(x+2)(x+3)(x+a)(x^2+b) = 0$

Problem 9 Solve the equations.

a) $x^4 - 11x^2 + 18 = 0$ b) $x^6 + 13x^3 + 40 = 0$ c) $x^{100} - x^{50} - 12 = 0$

Problem 10 Solve the equations.

- a) $1 + x + x^2 + x^3 + \dots + x^{98} + x^{99} = 0$ b) $1 + x + x^2 + x^3 + \dots + x^{49} + x^{50} = 0$ c) $\frac{x}{1.02} + \frac{x^2}{1.02^2} + \frac{x^3}{1.02^3} + \frac{x^{29}}{1.02^{29}} + \frac{x^{30}}{1.02^{30}} = 0$

Answers

Problem 1

- a) $x = \frac{5}{3}$ b) $x = -\frac{b}{a}$ c) $x = \frac{c-50}{c} = 1 \frac{50}{c}$ d) $x = \frac{8}{5}$
- e) $x = \frac{d-b}{a-c}$ if $a \neq c$. For a = c and $b \neq d$ there is no solution, for a = c f) $x = \frac{12k-96}{7}$ and b = d all numbers are solutions.
- g) x = 18h) $x = \frac{c+3d-k-11}{5d-b}$ if $b \neq 5d$. If b = 5d and $c + 3d \neq k + 11$ there are no solutions, if b = 5d and c + 3d = k + 11 all numbers are solutions.
- i) $x = \frac{2(a-1)(b-12)}{3(ac+a-c+1)}$ if $ac + a c + 1 \neq 0$. If ac + a c 1 = 0 and $(a-1)(b-12) \neq 0$ there are no solutions and if ac + a c + 1 = 0 and (a-1)(b-12) = 0 all numbers are solutions.

j)
$$x = -2$$
 k) $x = \frac{7a+5}{8}$ l) no solutions m) no solutions

n) all numbers are solutions

Problem 2

	a) $x = 0$	b) $x = 1, x = -1$	c) no solutions	d) <i>x</i> = 3
	 e) either <i>x</i> + 3 = 1, i.e. i.e. <i>x</i> = −4 	x = -2, or $x + 3 = -1$,	f) no solutions	g) <i>x</i> = 3
	h) $x = 2, x = 4$	i) no solutions	j) $x = \frac{1}{3}$	k) $x = \frac{1}{3} \pm 1$, i.e. $x = \frac{4}{3}, x = -\frac{2}{3}$
	l) no solutions	m) $x = \frac{1}{3}$	n) $x = \frac{4}{3}, x = -\frac{2}{3}$	o) no solutions
	p) $x = 2, x = -3$	q) $x = -\frac{5}{3}, x = \frac{1}{2}$	r) $x = 0, x = -1$	s) $x = \frac{5}{2} \pm \frac{\sqrt{33}}{2}$
	t) $x = -7, x = 5$	u) $x = -5, x = 9$		
_	11 0			

Problem 3

a) $x^2 - 1$	b) $x^2 - x - 6$	c) $x^2 + 11x + 24$
d) $x^2 - 14x - 51$	e) $x^2 - 6x + 4$	f) $x^2 + 22x + 121$

Problem 4

a) $(x-4)^2 = -12 + 16$ gives	b) $(x+5)^2 = -9 + 25$ gives	c) $(x - \frac{5}{2})^2 = 14 + \frac{25}{4}$ gives
x = 2, x = 6	x = -9, x = -1	x = -2, x = 7
d) $(x - \frac{3}{2})^2 = 4 + \frac{9}{4}$ gives	e) $(x-12)^2 = 25 + 12^2$ gives	f) $(x - \frac{5}{2})^2 = 6 + \frac{25}{4}$ gives
x = -1, x = 4	x = -1, x = 25	x = -6, x = 1

Problem 5

a) k = -25 b) $k = \pm 6$ c) $k = -\frac{12}{49}$

Problem 6

a) $(x-2)(x-6)$	b) $(x+9)(x+1)$	c) $(x-9)^2$
d) $2(x+5)(x-7)$	e) $3(x+11)(x-3)$	f) $5(x+6)^2$

Problem 7

a) If *r* is the smallest zero, the polynomial is $x^2 - (2r + 1)x + r(r + 1)$.

- b) If r is the second smallest zero, the polynomial is
- (x r)³ 25(x r) = x³ 3rx² + (3r² 25)x (r 5)r(r + 5). c) $a(x r)^2 = ax^2 2arx + ar^2$ ($a \neq 0$).

Problem 8 a) $x = \frac{\sqrt{3}}{2}, x = 9, x = 11$ b) $x = \pm \sqrt{5}, x = 3 \pm \sqrt{5}$ c) $x = 7, x = 1 \pm \sqrt{7}$ d) $x = -1, x = -2, x = -3, x = -a, x = \pm \sqrt{-b}$ for $b \le 0$ Problem 9 a) $x = \pm \sqrt{2}, x = \pm 3$

b) $x = -2, x = -\sqrt[3]{5}$

c) $x = \pm \sqrt[25]{2}$

Problem 10

- a) x = -1
- b) no solutions
- c) x = 0, x = -1.02