EBA2911 Mathematics for Business Analytics autumn 2019
 Exercises

... if I couldn't formulate a problem in economic theory mathematically, I
didn't know what I was doing.
R. Lucas

Lecture 7

Sec. 4.1-6
Functions and graphs. Linear and quadratic functions. Revenue and cost functions.
Here are recommended exercises from the textbook [SHSC].
Section 4.2 exercise 1-6, 13-15
Section 4.3 exercise 1-3
Section 4.4 exercise $1-10$
Section 4.6 exercise 1-7

Problems for the exercise session Wednesday 25 Sept. from 14 o'clock in B2-085

Problem 1 Determine the expression of the linear function $f(x)$ in figure 1.

Figure 1: Linjer a-c
Problem 2 Determine the intersection points of the graph and the x-axis and of the graph and the y-axis in Problem 1 a-c.
Problem 3 Determine the expression of the second degree polynomial function $f(x)$ in a-f, see figure 2 and 3.
Problem 4 Determine the intersection points of the graph and the x-axis and of the graph and the y-axis in Problem 3 c-f.
Problem 5 Determine the expression of the linear function $f(x)$ such that the graph passes through the points P and Q.
a) $P=(-2,5)$ and
$Q=(-4,6)$
b) $P=(80,90)$ and
$Q=(50,80)$
c) $P=(4,-3)$ and
$Q=(-1,7)$

Problem 6 Determine the expression of the linear function $f(x)$ such that the graph passes through the point P and has slope s.
a) $P=(-2,5)$ and $s=\frac{2}{3}$
b) $P=(8,90)$ and $s=\frac{1}{10}$
c) $P=(4,30)$ and $s=-\frac{3}{10}$

Figure 2: Parabolas a-c

Figure 3: Parabolas d-f

Problem 7 Determine the expression of the second degree polynomial function $f(x)$ such that:
a) The graph passes through the points $P=(0,7), Q=(1,4)$ and $R=(2,3)$.
b) The graph passes through the points $P=(-5,65), Q=(3,65)$ and $R=(7,17)$.
c) The graph passes through the point $P=(4,-6)$ and $Q=\left(\frac{13}{2},-\frac{49}{4}\right)$ is the point where the function attains its minimum.
Problem 8 Write $f(x)$ in the form $a(x-s)^{2}+d$ (by 'completing the square') and use the expression to sketch the graph.
a) $f(x)=x^{2}-10 x+30$
b) $f(x)=3 x^{2}+36 x+110$
c) $f(x)=-\frac{1}{7} x^{2}+2 x-6$

Problem 9 Determine the values of a which gives positive profit for $x>300$ (and negative profit for $x<300$) if:
a) The cost function is $C(x)=2100+5 x$ and the revenue function is $R(x)=a x$.
b) The cost function is $C(x)=4500-5 x+0,01 x^{2}$ and the revenue function is $R(x)=a x$ (both with $0 \leqslant x \leqslant 1000$ as domain of definition).

Answers

Problem 1

a) $f(x)=3 x-5$
b) $f(x)=-\frac{x}{2}+6$
c) $f(x)=-\frac{x}{7}+40$

Problem 2

a) $x=\frac{5}{3}$ and $y=-5$
b) $x=12$ and $y=6$
c) $x=280$ and $y=40$

Problem 3
a) $f(x)=\frac{1}{2}(x-2)(x-5)=\frac{1}{2} x^{2}-\frac{7}{2} x+5$
b) $f(x)=-(x+3)(x-2)=-x^{2}-x+6$
c) $f(x)=\frac{1}{10}(x-100)^{2}=\frac{1}{10} x^{2}-20 x+1000$
d) $f(x)=-(x-1)^{2}-1=-x^{2}+2 x-2$
e) $f(x)=\frac{1}{4}(x+3)^{2}+\frac{17}{4}=\frac{1}{4} x^{2}+\frac{3}{2} x+\frac{13}{2}$
f) $f(x)=\frac{1}{100}(x-50)^{2}+1=\frac{1}{100} x^{2}-x+26$

Problem 4
a) $x=2, x=5$ and $y=5$
b) $x=-3, x=2$ and $y=6$
c) $x=100$ and $y=1000$
d) non and $y=-2$
e) non and $y=\frac{13}{2}$
f) non and $y=26$

Problem 5

a) $f(x)=-\frac{1}{2} x+4$
b) $f(x)=\frac{1}{3} x+\frac{190}{3}$
c) $f(x)=-2 x+5$

Problem 6
a) $f(x)=\frac{2}{3} x+\frac{19}{3}$
b) $f(x)=\frac{1}{10} x+\frac{446}{5}$
c) $f(x)=-\frac{3}{10} x+\frac{156}{5}$

Problem 7

a) $(x-2)^{2}+3=x^{2}-4 x+7$
b) $-(x+1)^{2}+81=-x^{2}-2 x+80$
c) $\left(x-\frac{13}{2}\right)^{2}-\frac{49}{4}=x^{2}-13 x+30$

Problem 8

a) $f(x)=(x-5)^{2}+5$
b) $f(x)=3(x+6)^{2}+2$
c) $f(x)=-\frac{1}{7}(x-7)^{2}+1$

For sketches of a-c see figure 4. A small table with relevant function values is expected.

Problem 9

a) $a>3600 / 300=12$
b) $a>13$

Figure 4: Parabolas 8a-c

