EBA2911 Mathematics for Business Analytics autumn 2019

Exercises

... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.

R. Lucas

Lecture 8

Sec. 6.3.1-3, 5.4-5, 4.7

Increasing/decreasing functions. Circles, ellipses. Polynomial functions.

Here are recommended exercises from the textbook [SHSC].

Section **6.3** exercise 3

Section 5.4 exercise 1, 3

Section 5.5 exercise 1-6

Section 4.7 exercise 4

Problems for the exercise session Wednesday 2 Oct. from 14 o'clock in B2-085

Problem 1 Determine the equations of the circles in figure 1.

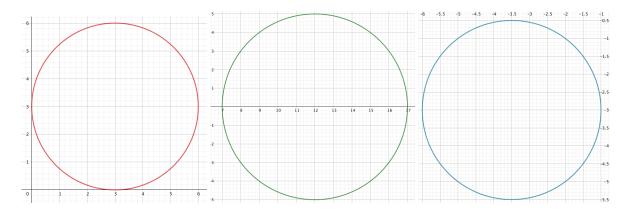


Figure 1: Circles a-c

Problem 2 Determine the center S and the radius r of the circles.

a)
$$(x-3)^2 + (y-4)^2 = 5$$

b)
$$(x+1)^2 + v^2 = 3$$

a)
$$(x-3)^2 + (y-4)^2 = 5$$
 b) $(x+1)^2 + y^2 = 3$ c) $(3x-2)^2 + (3y-4)^2 = 9$

d)
$$x^2 + y^2 - 4x - 10y = -25$$
 e) $x^2 + y^2 + 6x - 12y = -44$

e)
$$x^2 + y^2 + 6x - 12y = -44$$

f)
$$25x^2 + 25y^2 - 20x - 30y = -12$$

Problem 3 Determine the equations of the ellipses in figure 2.

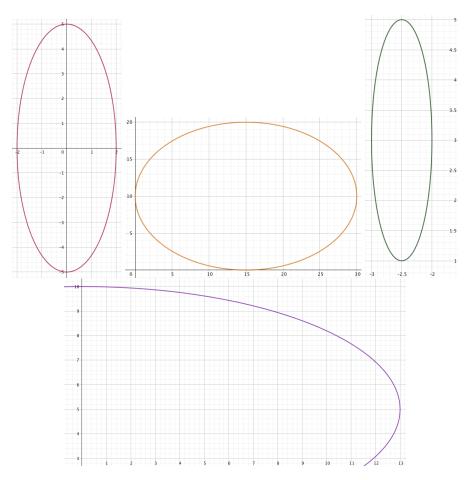


Figure 2: Ellipses a-d

Problem 4 Determine the center *S* and the semi-axes of the ellipse. Draw a sketch of the ellipse.

a)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

a)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$
 b) $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{16} = 1$ c) $16(x-1)^2 + 9(y-2)^2 = 144$

c)
$$16(x-1)^2 + 9(y-2)^2 = 144$$

d)
$$\frac{x^2}{2} + y^2 - 6y = -8$$
 e) $9x^2 + 18x + 4y^2 = 27$ f) $4x^2 + 9y^2 - 16x + 18y = 11$

e)
$$9x^2 + 18x + 4y^2 = 27$$

f)
$$4x^2 + 9y^2 - 16x + 18y = 11$$

g)
$$25x^2 + 4y^2 - 100x - 40y = -100$$

Problem 5 Give elementary arguments for the statements.

- a) $f(x) = x^2 \mod x \ge 0$ is strictly increasing.
- b) $f(x) = \sqrt{x}$ is strictly increasing.
- c) $f(x) = \frac{1}{x}$ with x > 0 is strictly decreasing.

Problem 6 Determine the intersection points of

- a) the line 3x + 2y = 12 and the line -3x + 2y = -6
- b) the line 2x + y = 6 and the ellipse in Problem 4a

Problem 7 Determine which expressions (below) and graphs (in figure 3) which belong together.

•
$$x^4 - 8x^3 + 24x^2 - 32x + \frac{161}{10}$$

•
$$\frac{x^5}{10} - \frac{3x^4}{2} + \frac{17x^3}{2} - \frac{45x^2}{2} + \frac{137x}{5} - 10$$

$$-x^3+6x^2-11x+7$$

•
$$x^4 - 10x^3 + 35x^2 - 50x + 26$$

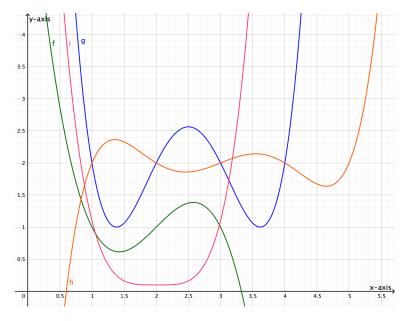


Figure 3: The graphs of four polynomial functions

Answers

Problem 1

a)
$$(x-3)^2 + (y-3)^2 = 0$$

b)
$$(x-12)^2 + y^2 = 25$$

a)
$$(x-3)^2 + (y-3)^2 = 9$$
 b) $(x-12)^2 + y^2 = 25$ c) $(x+3,5)^2 + (y+3)^2 = 6,25$

Problem 2

a)
$$S = (3,4), r = \sqrt{5}$$

b)
$$S = (-1, 0), r = \sqrt{3}$$
 c) $S = (\frac{2}{3}, \frac{4}{3}), r = 1$

c)
$$S = (\frac{2}{3}, \frac{4}{3}), r = 1$$

d)
$$S = (2,5), r = 2$$

e)
$$S = (-3, 6), r = 1$$

d)
$$S = (2,5), r = 2$$
 e) $S = (-3,6), r = 1$ f) $S = (\frac{2}{5}, \frac{3}{5}), r = \frac{1}{5}$

Problem 3

a)
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$

c)
$$4(x+2.5)^2 + \frac{(y-3)^2}{4} = 1$$

b)
$$\frac{(x-15)^2}{225} + \frac{(y-10)^2}{100} = 1$$

d)
$$\frac{x^2}{169} + \frac{(y-5)^2}{25} = 1$$

Problem 4

a)
$$S = (0,0)$$
, semi-axes $a = 3$, $b = 4$

c)
$$S = (1, 2)$$
, semi-axes $a = 3$, $b = 4$

e)
$$S = (-1, 0)$$
, semi-axes $a = 2$, $b = 3$

g)
$$S = (2,5)$$
, semi-axes $a = 2$, $b = 5$

b)
$$S = (1, 2)$$
, semi-axes $a = 3$, $b = 4$

d)
$$S = (0,3)$$
, semi-axes $a = \sqrt{2}$, $b = 1$

f)
$$S = (2, -1)$$
, semi-axes $a = 3$, $b = 2$

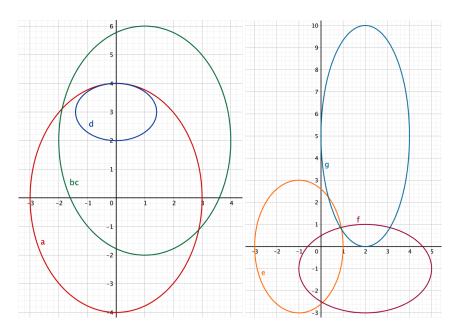


Figure 4: Ellipses a-d and e-g

Problem 5

- a) Suppose $0 \le x_1 < x_2$. Then $x_2 = x_1 + k$ for a positive constant k. Then $f(x_2) = (x_1 + k)^2 = x_1^2 + 2kx_1 + k^2$. We have $2kx_1 + k^2 = k(2x_1 + k)$ which is a product of two positive numbers, hence a positive number. Then $f(x_1) = x_1^2 < x_1^2 + 2kx_1 + k^2 = f(x_2)$ and $f(x) = x^2$ for $x \ge 0$ is strictly increasing.
- b) We divide each side of the inequality $x_1 < x_2$ with the positive number x_2 and get the inequality $\frac{x_1}{x_2} < 1$. The square root of a number which is less than 1 is itself less than 1, i.e. $\sqrt{\frac{x_1}{x_2}} < 1$. But $\sqrt{\frac{x_1}{x_2}} = \frac{\sqrt{x_1}}{\sqrt{x_2}}$. We get the inequality $\frac{\sqrt{x_1}}{\sqrt{x_2}} < 1$ and when we multiply each side with the positive number $\sqrt{x_2}$ we get the inequality $f(x_1) = \sqrt{x_1} < \sqrt{x_2} = f(x_2)$. Hence $f(x) = \sqrt{x}$ strictly increasing.
- c) We divide each side of the inequality $x_1 < x_2$ with the positive number x_2 and get the equivalent inequality $\frac{x_1}{x_2} < 1$. Then we divide this inequality by the positive number x_1 and get $f(x_2) = \frac{1}{x_2} < \frac{1}{x_1} = f(x_1)$. Hence $f(x) = \frac{1}{x}$ for x > 0 is strictly decreasing.

Problem 6

a)
$$(3, \frac{3}{2})$$

b)
$$(3,0)$$
 and $(\frac{15}{13},\frac{48}{13})$

Problem 7

•
$$f(x) = -x^3 + 6x^2 - 11x + 7$$

•
$$g(x) = x^4 - 10x^3 + 35x^2 - 50x + 26$$

•
$$h(x) = \frac{x^5}{10} - \frac{3x^4}{2} + \frac{17x^3}{2} - \frac{45x^2}{2} + \frac{137x}{5} - 10$$
 • $i(x) = x^4 - 8x^3 + 24x^2 - 32x + \frac{161}{10}$

•
$$i(x) = x^4 - 8x^3 + 24x^2 - 32x + \frac{161}{10}$$