Plan
1 Optimization problems without constraints
2 Optimization problems with constraints
3 Extreme value theorem
(1) Optimization without constracuts maximin $f(x, y)$

Extra lectures/ problem sessions:

Lecture 32:
Wed May 26
Probed Scessin Thu May 27
t one lecture mare

Method: (1) Find candidate points \leftrightarrows all pats that
a) Stationeren points:

$$
f_{x}^{\prime}=0, f_{y}^{\prime}=0<F \circ c
$$

b) other critical points: f_{x}^{\prime} or f_{y}^{\prime} does not exist
c) Boundary pts for D_{f} could posectry be max lungi for t
 4
List of candidate pis Compute of fer each candidate P^{t}.
$\operatorname{det}>0, \operatorname{tr}>0$
$\Rightarrow\left(x^{*}, y^{4}\right)$ local min

$$
d e t>0, t r<0
$$ $\Rightarrow\left(x^{n}, y^{\prime \prime}\right)$ leal max act <0 \Rightarrow saddle pt

(2) Clossites the candidate points as local max, local min or saddle point
a) Second dervalive test: $\quad H(-1)\left(x^{4}, y^{4}\right) \xrightarrow{\prime \prime} \rightarrow d+t=A C-B^{2}$
b) Exception:

* stationary pt with $A C-B^{2}=0$
* stationary pit with $A C-$ Pr $^{2}=0$ pis of D_{f}
\Rightarrow Use the detn. of local max/local min.
(3) Determine if the beot condidate fer noxlmin is slobal noximin.
- Use detr. of rantmin.
- Trich: Look at cuts, curve, and see whot happues to f there.
usetul tool: Wolfrom Alpha

$$
\text { plot } x^{\wedge} z+x y+y^{\wedge} z=z
$$

(2) Optimalization with constreiits

Ex: a) max $\underbrace{f(x, y)=x^{2}+y^{2}}_{\text {obeation fn. }}$ whan $\underbrace{-1 \leqslant x \leqslant 1,-1 \leqslant y \leqslant 1}_{\text {contraints }}$
b) min $f(x, y)=x y$ whin $\underbrace{2 x+3 y=6}_{\text {cenotaint }}$
c) max $f(x, y)=x+3 y$ when $\frac{x^{2}+y^{2}=10}{\text { castraind }}$
a)

$D=$ set of admissible points = all poits satityins all constraints

$$
\begin{aligned}
& D=\{(x, y):-1 \leq x, y \leq 1\} \\
& D:-1 \leq x, y \leq 1
\end{aligned}
$$

closed and banded $=$ compast

D: $2 x+3 y=6$
a lins
$x=0: y=2$
ㅋo: $\rightarrow-3$
$3 y=6-2 x$

$$
y=2-\frac{2}{3} x
$$

All pHe are
Damdary pts
c)

$D: x^{2}+y^{2}=10$ circle with $r=\sqrt{10}$
Only bandery
(3) Extreme value theorem

Compact sets: D is a subset of R^{2}
Dah. D is called compact it it is
i) closed: all bandars pts of D are inclucted in D.

$$
=\leqslant \geqslant \text { closed }<\geqslant \text { : not closed }
$$

ii) bounded: there ore number a, b, c, d such that

$$
\begin{aligned}
& a \leq x \leq b \\
& c \leq y \leq d
\end{aligned}
$$

for ale pis (x, y) in A.

Extreme Value theorem
If f is a cont. function on a complect set D, the f attains a max and a min on D.

D Compact
$E_{x 1} \quad \max f(x, y)=x^{2}+y^{2} \quad$ whe $f_{=2}^{-1} \leqslant x, y \leqslant 1$

$$
\begin{aligned}
& D=\text { all adm. pts } f=2, k+y \\
& =\{(x, y):-1 \leqslant x, y \\
& \leq 13
\end{aligned}
$$

Methed:
(1) Check if EVT applies (esatstere velue theorn)
(2) Condidate pts:
a) Intenior pls thot are stationans b) Interor phs that are otur
c) Bounday pts of D

When D is compict, then the max is the cardidetept with the hishest f-value.

Similor computions for $K 3, K 4$: $\max f(x, y)=2$ on D

Ex
(1) f iscont.

- compact? Yes.
\Rightarrow there is a max
(2) Condidole pts
a)

$$
\begin{aligned}
& f_{x}^{\prime}=2 x=0 \\
& f_{y}^{\prime}=2 y=0 \\
& \begin{array}{l}
x(y)=(0,0) \\
\text { interior r }
\end{array} \quad \begin{array}{l}
x=0 \\
y=0
\end{array}
\end{aligned}
$$

b) no such pts
c) Look at $K_{1}, K^{2}, k 3, k 4$:

KI:

$$
\begin{aligned}
x=1 \quad f=f(1, y) & =1^{2}+y^{2} \\
-1 \leqslant y \leqslant 1 & =y^{2}+1 \\
f_{y}^{\prime} & =2 y \\
& \\
f(1,-1) & =2 \\
f(1,1) & =2
\end{aligned}
$$

Condidats on $k l:(1, \pm 1) \quad f=2$
K2: $y=1 \quad f=f(x, 1)=x^{2}+1$
$-1 \leq x \leq 1 \quad f_{x}^{\prime}=2 x$

Candidals on KL: $(\pm 1,1) \quad f=2$

K3:

$$
\begin{aligned}
& x=-1 \\
& -1 \leqslant y \leqslant 1
\end{aligned}
$$

K4: $y=-1$

$$
-1 \leq x \leq 1
$$

$$
\begin{aligned}
& f=f(-1, y)=(-1)^{2}+y^{2}=y^{2}+1 \\
& f_{y}^{\prime}=2 y \quad f^{\prime}
\end{aligned}
$$

Condidets on $k 3$: $(-1, \pm 1) f=2$

Cand.ddts on K4: $(\pm 1,-1) \quad f=2$

AU condidete pts:

Port 2.

1. $D: y(x-2) \leq 3$

closed, not bounded \Rightarrow not compact.
2.

g) D

$$
\begin{aligned}
& D: x^{2}-2 x+4 y^{2}=4 \quad \mid+1 \\
& (x-1)^{2}+4 y^{2}=5 \\
& \frac{(x-1)^{2}}{5}+\frac{y^{2}}{5 / 4}=1
\end{aligned}
$$

ellipse, center (1,0) hall axes $a=\sqrt{5}, b=\sqrt{5} / 2$
m) $D i \sqrt{x^{2}+y^{2}}=3$
$x^{2}+y^{2}=9 \quad$ circle,

$$
r=3
$$

compact: Yes

0) D: $x^{2} g^{2}-x^{2}-y^{2}+1=0$

$$
\left(x^{2}-1\right)\left(y^{2}-1\right)=0
$$

$$
\left.\begin{array}{ll}
x^{2}=1 & \text { or } y^{2}=1 \\
x= \pm 1 & \text { or } y= \pm 1
\end{array}\right\} \begin{aligned}
& \text { union of } \\
& \text { four lines }
\end{aligned}
$$

P) $D i x^{2} y^{2}-x^{2}-y^{2}+1 \Leftrightarrow 1$

closed, not bounded
not erect.

D is closed, not bounded not compact.
5. c) $\max / \min f(x, y)=e^{x y-x-y}$

$$
f(x, y)=f(y, x)
$$

i) Interior stationary pts: $f=e^{u}, u=x y-x-y$

$$
\begin{array}{ll}
f_{x}^{\prime}=e^{u} \cdot(y-1)=0 & y=1 \\
f_{y}^{\prime}=e^{u} \cdot(x-1)=0 & x=1
\end{array}
$$

Candidates: $(x, y)=(1,1) \quad f=e^{-1}=1 / e$
interior pt. $\simeq 0.37$

<compat>I. EuR
there is amax lomin
ii) Other interior cortical tbs: no pts.
iii) Boundary pts: $K 1, K 2, K_{3}, K 4$ on kl:
$K 1: \begin{array}{ll}x=2 & f=f(2, y)=e^{y-2} \\ 0 \leq y \leq 2 & f_{y}^{\prime}=e^{y-2} \cdot 1>0\end{array}$
max: $f(2,2)=1$
min: $f(2,0)=\overline{1 / e^{2}}=0.14$

K: By symueting
max $f(2,2)=1$

$$
\begin{aligned}
& y=2 \quad f=f(x, 2)=e^{x-2} \\
& 0 \leqslant x \leqslant 2
\end{aligned}
$$

min $f(0,2)=1 / e^{e} \equiv 0.14$

KS:

$$
\begin{aligned}
& x=0 \quad f=f(0, y)=e^{-y} \\
& 0 \operatorname{sys} 2 f_{y}^{\prime}=e^{-y} \cdot(-1)<0
\end{aligned}
$$

K4: By symmetri

$$
y=0 \quad f=f(x, 0)=e^{-x}
$$

asks
$\max f(0,0)=1$
$\min f(a, 2)=1 e^{2} \simeq 0.14$
$\max f(0,0)=1$
min $f(2.0)=1 / e^{2} \simeq 0.14$

Coned: max: $f=1$ at $(0,0),(2,2)$
min: $f=1 / e^{2} \simeq a!4$ at $(0,2),(2,0)$

Key Problems

Problem 1.

We consider the region $D \subseteq \mathbb{R}^{2}$ given by the inequality $y(x-2) \leq 3$. Show $D=\{(x, y): y(x-2) \leq 3\}$ in a figure, and mark the interior points and the boundary points of D. Is D compact?

Problem 2.

We consider a subset D of the $x y$-plane \mathbb{R}^{2} given by the following conditions. Determine if the subset is compact. It is useful to sketch the region D.
a) $2 x+3 y=6$
b) $2 x+3 y<6$
c) $2 x+3 y \leq 6$
d) $x^{2}+y^{2}=4$
e) $x^{2}+y^{2} \geq 4$
f) $x^{2}+y^{2} \leq 4$
g) $x^{2}-2 x+4 y^{2}=4$
h) $x^{2}-2 x+4 y^{2} \leq 4$
i) $x^{2}-2 x+4 y^{2} \geq 4$
j) $x y=1$
k) $x y \leq 1$

1) $x y \geq 1$
m) $\sqrt{x^{2}+y^{2}}=3$
n) $\sqrt{x^{2}+y^{2}} \leq 3$
o) $x^{2} y^{2}-x^{2}-y^{2}+1=0$
p) $x^{2} y^{2}-x^{2}-y^{2}+1=1$

Problem 3.

What does the Extreme Value Theorem tell us? Given examples of a region D in the plane which is closed but not bounded, and a region E that is bounded but not closed. Can you find a function $f(x, y)$ that does not have a maximum and minimum in D, and a function $g(x, y)$ that does not have a maximum and minimum in E ?

Problem 4.

The level curves of the functions $f(x, y)=\underline{4 x^{2}+9 y^{2}}$ and $g(x, y)=x^{2} y^{2}-x^{2}-y^{2}+1$ in the region $-4 \leq x, y \leq 4$ are shown in the figures below:

$$
=\left(x^{2}-1\right)\left(y^{2}-1\right) \sqrt{x}=\left(x^{2}-1\right)^{2} \geq 0
$$

a) Find $\max / \min f(x, y)$ when $-4 \leq x, y \leq 4$ using the figure. o) $f=208$ at $(\pm 4, \pm 4)$
b) Find $\max / \min g(x, y)$ when $-4 \leq x, y \leq 4$ using the figure.
i. $(0,0)$
c) Find $\max / \min f(x, y)$ when $x^{2}+y^{2}=16$ using the figure.
d) Find $\max / \min g(x, y)$ when $x=y$ using the figure.
b) $f_{\text {max }}=225$ at $(\pm 4, \pm 4)$

$$
S_{\text {min }}=-16 \text { at }(\pm 4,0),(0, \pm 4)
$$

d)

Problem 5.

Solve the optimization problem:
a) $\max / \min f(x, y)=x^{3}-3 x y+y^{3}$ when $0 \leq x, y \leq 1$
b) $\max / \min f(x, y)=x^{3}-3 x y+y^{3}$ when $0 \leq x, y \leq 2$
c) $\max / \min f(x, y)=e^{x y-x-y}$ when $0 \leq x, y \leq 2$
d) $\max / \min f(x, y)=x y\left(x^{2}-y^{2}\right)$ when $-1 \leq x, y \leq 1$
e) $\max / \min f(x, y)=\left(x^{2}-1\right)\left(y^{2}-1\right)$ when $-1 \leq x, y \leq 1$

Problem 6.

Problem 7.6.1-7.6.3 (norwegian textbook, optional)
Problem 9.27-9.31 (norwegian workbook, optional)

Answers to Key Problems

Problem 1.

Boundary points are given by the equation $y(x-2)=3$, or points on the graph of $y=3 /(x-2)$ (a hyperbola). Interioer points are given by $y(x-2)<3$, or points under the hyperbola when $x>2$, and points over the hyperbola when $x<2$, including all points with $x=2$. The region D is not compact (it is closed but not bounded).

Problem 2.

a) No
b) No
c) No
d) Yes
e) No
f) Yes
g) Yes
h) Yes
i) No
j) No
k) No
l) No
m) Yes
n) Yes
o) No
p) No

Problem 4.

a) $f_{\text {min }}=0$ at $(0,0)$, and $f_{\max }=208$ at $(\pm 4, \pm 4)$
b) $f_{\text {min }}=-15$ at $(0, \pm 4)$ and $(\pm 4,0)$, and $f_{\max }=225$ at $(\pm 4, \pm 4)$
c) $f_{\text {min }}=64$ at $(\pm 4,0)$, and $f_{\text {max }}=144$ at $(0, \pm 4)$
d) $f_{\min }=0$ at $(1,1)$ and $(-1,-1)$, and $f_{\max }=225$ at $(4,4)$ and $(-4,-4)$

Problem 5.

a) $f_{\max }=1, f_{\text {min }}=-1$
b) $f_{\max }=8, f_{\text {min }}=-1$
c) $f_{\max }=1, f_{\min }=1 / e^{2}$
d) $f_{\max }=2 \sqrt{3} / 9, f_{\min }=-2 \sqrt{3} / 9$
e) $f_{\text {max }}=1, f_{\text {min }}=0$

