EBA 2910 Mathematics

Extra lectures/

Lecture 32:

problem sessions "

Plan

- Optimization problems without constraints
- 2 Optimization problems with constraints
- 3 Extreme value theorem

Wed May 26 Problen Sussin () Optimization without constraints Thu May 27 t one lecture max/min f(xiy) nore all pails that Method: () Find condidate points could possibly be wax luin a) Stationary points: for f f'x = 0, f'x = 0 ~ Foc b) Other critical points: t'x or fy does not exist c) Boundary phs for Df L Compute & fer each condidate pt. List of condidate the det 70, 4170 = (x + y) local min 2 Clossify the condidule points as local max, local min or saddle detro, treo = (x", y") local mex - a det = Ac-02 det < 0 H(f) (x13) ~ +r= A+C a) second deriveline test: => saddle pt $\begin{pmatrix} a & c \\ c & c \end{pmatrix}$ b) Exceptions: * stationary pt with AC-B? = 0 * other credical pro or boundary pts of Dp Use the defn. of local max local min.

3

EBA 2910 Mathematics

https://www.dr-eriksen.no/teaching/EBA2910/

ess School BSc in Business Analytics

X

whn - $\max f(x,y) = x^2 + y^2$ -15×1451 Ex -f=2 D= all adm. pts = { (xiy): -1 5x.4 513 7=0 Method: Exi 1) Check if EVT applies f iscont. D compact ? Yes. (contrare value theorem) = the is a max 2 Condidate pts: 2) Condidate pts as Interior plas that are stationing •) $f'_{x} = 2x = 0$] x = 0 $f'_{y} = 2y = 0$] y = 0b) Interior pts that are atter critical pts c) Boundary pts of D (x,y) = (0,0) f = 0interior pt When D is compact, then 5) no such pts the max is the case, done pt with the night of - value. c) Look at KI, K2, K3, K4: KI: $x=(f=f(1,y)=1^{2}+y^{2}$ -15y51 = $u^{2}+1$ f'y = 2y -1 -0 + 1 f(1,-1) = 2Similar computions for KI,KY: max f(xis) = 2 on D f(v, v) = 2Condidats on KI: (1,±1) f=2 $K_{2}: y=1 \quad f=f(x,1)=x^{2}+1$ -15×51 1 = 2× 5'-----Candidats on KLI (II,1) f=2

EBA 2910 Mathematics

Lecture 29

KJ:
$$x = -1$$

 $f = f(-1,y) = (-1)^{2} + 5^{2} = 5^{2} + 1$
 $-1 \leq 5 \leq 1$
 $f'_{1} = 2y$
 $f'_{-1} = 0$
 -1
 $f'_{-1} = 1$
 $f = f(x_{1} - 1) = x^{2} + (-1)^{2} = x^{2} + 1$
 $f = 2$
 $f'_{1} = 2x$
 $f'_{1} = -0$
 $-1 \leq x \leq 1$
 $f'_{2} = 2x$
 $f'_{1} = -0$
 $f = 2$
 $f = 2$
 $f'_{2} = 2x$
 $f'_{2} = -0$
 $f = 2$
 $f = 2$

^

EBA 2910 Mathematics

Port 2.

=> not compact.

2. 9)
$$D: x^2 - 2x + 4y^2 = 4$$
 [+1
 $(x-1)^2 + 4y^2 = 5$
 $(x-1)^2 + 4y^2 = 5$
 $(x-1)^2 + 5/4 = 1$
ellipse, center (10)
half ones $a = \sqrt{5}$, $b = \sqrt{5}$

m) D:
$$\sqrt{x^2+y^2} = 3$$

 $x^2+y^2 = 9$ cirde,
 $y=3$

5. 9 max/min
$$f(x_{1}) = e^{-x_{1}}$$
 where $f(x_{1}) = e^{-x_{1}}$ where $f(x_{1}) = e^{-x_{1}}$ where $f(x_{1}) = e^{-x_{1}}$
6) holding glot $f = e^{-x_{1}}$ we have $f(x_{1}) = e^{-x_{1}}$
 $f(x) = e^{-x_{1}} (y-1) = 0$ $y=1$
 $f(y) = e^{-x_{1}} (x-1) = 0$ $y=1$
 $f(y) = e^{-x_{1}} (x-1) = 0$ $y=1$
 $f(y) = e^{-x_{1}} (x-1) = 0$ $x=(1)$
 $f(y) = e^{-x_{1}} (x-1) = e^{-x_{1}}$
 $f(y) = e^{-x_{1}} (x-1) = e^{-x_{1}}$
 $f(y) = 0$ $f(x,y) = e^{-x_{1}}$
 $f(y) = 0$ $f(x,y) = e^{-x_{1}}$
 $f(y) = 0$ $f(x,y) = e^{-x_{1}}$
 $f(x,y) = 1/e^{-x_{1}} = 0$
 $f(x,y) = 1/e^{-x_{$

Key Problems

Problem 1.

We consider the region $D \subseteq \mathbb{R}^2$ given by the inequality $y(x-2) \leq 3$. Show $D = \{(x,y) : y(x-2) \leq 3\}$ in a figure, and mark the interior points and the boundary points of D. Is D compact?

Problem 2.

We consider a subset D of the xy-plane \mathbb{R}^2 given by the following conditions. Determine if the subset is compact. It is useful to sketch the region D.

a) $2x + 3y = 6$	b) $2x + 3y < 6$	c) $2x + 3y \le 6$	d) $x^2 + y^2 = 4$
e) $x^2 + y^2 \ge 4$	f) $x^2 + y^2 \le 4$	g) $x^2 - 2x + 4y^2 = 4$	h) $x^2 - 2x + 4y^2 \le 4$
i) $x^2 - 2x + 4y^2 \ge 4$	j) $xy = 1$	k) $xy \leq 1$	l) $xy \ge 1$
$m)\sqrt{x^2+y^2}=3$	n) $\sqrt{x^2 + y^2} \le 3$	o) $x^2y^2 - x^2 - y^2 + 1 = 0$	p) $x^2y^2 - x^2 - y^2 + 1 = 1$

Problem 3.

What does the Extreme Value Theorem tell us? Given examples of a region D in the plane which is closed but not bounded, and a region E that is bounded but not closed. Can you find a function f(x,y) that does not have a maximum and minimum in D, and a function g(x,y) that does not have a maximum and minimum in E?

Problem 4.

The level curves of the functions $f(x,y) = 4x^2 + 9y^2$ and $g(x,y) = x^2y^2 - x^2 - y^2 + 1$ in the region $-4 \le x, y \le 4$ are shown in the figures below:

Problem 5.

Solve the optimization problem:

a) $\max / \min f(x,y) = x^3 - 3xy + y^3$ when $0 \le x, y \le 1$ b) $\max / \min f(x,y) = x^3 - 3xy + y^3$ when $0 \le x, y \le 2$

d) max / min $f(x,y) = xy(x^2 - y^2)$ when $-1 \le x, y \le 1$

c) $\max / \min f(x,y) = e^{xy - x - y}$ when $0 \le x, y \le 2$

$$\max / \min f(x,y) = (x^2 - 1)(y^2 - 1)$$
 when $-1 \le x, y \le 1$

Problem 6.

e)

Problem 7.6.1 - 7.6.3 (norwegian textbook, optional) Problem 9.27 - 9.31 (norwegian workbook, optional)

Answers to Key Problems

Problem 1.

Boundary points are given by the equation y(x-2) = 3, or points on the graph of y = 3/(x-2) (a hyperbola). Interior points are given by y(x-2) < 3, or points under the hyperbola when x > 2, and points over the hyperbola when x < 2, including all points with x = 2. The region D is not compact (it is closed but not bounded).

Problem 2.

a) No	b) No	c) No	d) Yes	e) No	f) Yes	g) Yes	h) Yes
i) No	j) No	k) No	l) No	m) Yes	n) Yes	o) No	p) No

Problem 4.

- a) $f_{\min} = 0$ at (0,0), and $f_{\max} = 208$ at $(\pm 4, \pm 4)$
- b) $f_{\min} = -15$ at $(0, \pm 4)$ and $(\pm 4, 0)$, and $f_{\max} = 225$ at $(\pm 4, \pm 4)$
- c) $f_{\min} = 64$ at (±4,0), and $f_{\max} = 144$ at (0, ± 4)
- d) $f_{\min} = 0$ at (1,1) and (-1, -1), and $f_{\max} = 225$ at (4,4) and (-4, -4)

Problem 5.

a) $f_{\text{max}} = 1$, $f_{\text{min}} = -1$ b) $f_{\text{max}} = 8$, $f_{\text{min}} = -1$ c) $f_{\text{max}} = 1$, $f_{\text{min}} = 1/e^2$ d) $f_{\text{max}} = 2\sqrt{3}/9$, $f_{\text{min}} = -2\sqrt{3}/9$ e) $f_{\text{max}} = 1$, $f_{\text{min}} = 0$