EBA2911 Mathematics for Business Analytics autumn 2020
 Exercises

... if I couldn't formulate a problem in economic theory mathematically, I
didn't know what I was doing.

Lecture 10
on Wednesday 7 Sept. 10-11.45 in B2-060
Sec. 5.3, 4.9-10: Inverse functions. Exponential functions. Logarithms.
Here are recommended exercises from the textbook [SHSC].
Section 5.3 exercise 1, 3-5, 7, 9, 10
Section 4.9 exercise 1-4, 8-10
Section 4.10 exercise 1, 2,6

Problems for the exercise session

Wednesday 7 Oct. at 12-15 in CU1-067 or on Zoom

Problem 1 Suppose $g(x)$ is the inverse function of $f(x)$. Determine:
a) $g(10)$ if $f(3)=10$
b) $f(g(5))$
c) $f(\sqrt{2})$ if $g(3)=\sqrt{2}$
d) $g(f(9))$

Problem 2 Determine the inverse function $g(x)$ and the domain D_{g} of the function $f(x)$ with domain D_{f}.
a) $f(x)=2 x-3$ with
b) $f(x)=0.5 x+1.5$ with $D_{f}=$ all numbers
c) $f(x)=x^{2}+6 x$ with $D_{f}=\langle\leftarrow,-3]$
d) $f(x)=20+\frac{1}{x-3}$ with $D_{f}=\langle 3, \rightarrow\rangle$
e) $f(x)=(x-1)^{3}+50$ with $D_{f}=[1, \rightarrow\rangle$

Problem 3 We have (approximately) $\ln 2=0.6931$ and $\ln 3=1.0986$ and $\ln 5=1.6094$. Use these numbers to determine the values (approximately) without using the ln-button on the calculator.
a) $\ln 250$
b) $\ln 625$
c) $\ln \frac{625}{216}$
d) $\ln \frac{1000000}{27}$
e) $\ln 130-\ln 78$
f) $\ln \sqrt[10]{6}$

Problem 4 Solve the equations.
a) $e^{x}=5$
b) $e^{2 x+1}=5$
c) $e^{2 x+1}=3 e^{x+2}$
d) $\ln (x)=-2$
e) $\ln (7 x-3)=-2$
f) $\ln (x-3)=\ln (2 x+1)+1$
g) $e^{2 x}-4 e^{x}-5=0$

Problem 5 Solve the inequalities.
a) $e^{x} \geqslant 5$
b) $e^{2 x+1} \geqslant 5$
c) $\ln (x)<-2$
d) $\ln (x-3)<-2$
e) $\frac{3 e^{x}}{e^{x}+1}<5$
f) $\ln \frac{3 x-2}{x-7} \geqslant 0$

Problem 6 Determine the asymptotes of the function.
a) $f(x)=e^{-0.1 x}+23$
b) $f(x)=e^{x(10-x)}+50$
c) $f(x)=\frac{1000^{0.04 x}}{e^{0.04 x}+50}$
d) $f(x)=\ln (10-x)$
e) $f(x)=\ln \left(x^{2}-400\right)$
f) $f(x)=\ln (120 x+10)-\ln (20 x-30), D_{f}=\left\langle\frac{3}{2}, \rightarrow\right\rangle$

Problem 7 Determine the inverse function $g(x)$ and the domain D_{g} of the function $f(x)$ with domain D_{f}.
(a) $f(x)=e^{\frac{x}{3}}-1$ with $D_{f}=[0, \rightarrow\rangle$
(b) $f(x)=4 \ln (x-10)$ with $D_{f}=[11, \rightarrow\rangle$

Problem 8 Determine the expression $f(x)=c+\frac{a}{x-b}$ of the hyperbolas (a-d) in figure 1 .

Figure 1: Hyperbolas a-d
Problem 9 Determine the asymptotes of the hyperbolas (a-d) in Problem 8.
Problem 10 Determine the asymptotes of the rational functions.
a) $f(x)=\frac{4 x-10}{x-3}$
b) $f(x)=\frac{70-40 x}{3-2 x}$
c) $f(x)=\frac{12}{x^{2}+3}$
d) $f(x)=\frac{4 x^{2}-28 x+40}{x^{2}-4 x+3}$
e) $f(x)=\frac{x^{2}+3 x+5}{x-7}$
f) $f(x)=\frac{x^{3}-8}{x^{2}-10 x+16}$

Problem 11 Determine if the function $f(x)$ has a zero in the interval I. Hint: The intermediate value theorem!
a) $f(x)=\sqrt{x-2}-x+3$ and $I=[4,5]$
b) $f(x)=(x-5) \sqrt{(0.2 x+5)}-0.2(x-3)^{2}$ and $I=[5,15]$
c) $f(x)=\frac{4 x-10}{x-3}-4$ and $I=[2,4]$

Answers

Problem 1

a) 3
b) 5
c) 3
d) 9

Problem 2

a) $g(x)=0.5 x+1.5$ with $D_{g}=$ all numbers
b) $g(x)=2 x-3, D_{g}=$ all numbers
c) $g(x)=-3-\sqrt{x+9}, D_{g}=R_{f}=[-9, \rightarrow\rangle$
d) $g(x)=3+\frac{1}{x-20}, D_{g}=\langle 20, \rightarrow\rangle$
e) $g(x)=\sqrt[3]{x-50}+1, D_{g}=[50, \rightarrow\rangle$

Problem 3

a) $\ln 250=\ln 2+3 \ln 5=0.6931+3 \cdot 1.6094=5.5213$
b) $\ln 625=4 \ln 5=4 \cdot 1.6094=6.4376$
c) $\ln \frac{625}{216}=4 \ln 5-3(\ln 3+\ln 2)=4 \cdot 1.6094-3(1.0986+0.6931)=1.0625$
d) $\ln \frac{1000000}{27}=6(\ln 5+\ln 2)-3 \ln 3=6 \cdot(1.6094+0.6931)-3 \cdot 1.0986=10.5192$
e) $\ln 130-\ln 78=\ln 5+\ln 26-\ln 3-\ln 26=1.6094-1.0986=0.5108$
f) $\ln 6^{\frac{1}{10}}=\frac{1}{10} \cdot \ln 6=\frac{1.0986+0.6931}{10}=0.1792$

Problem 4

a) $x=\ln 5$
b) $x=\frac{1}{2}(\ln (5)-1)$
c) $x=1+\ln (3)$
d) $x=e^{-2}$
e) $x=\frac{e^{-2}+3}{7}$
f) $x=-\frac{e+3}{2 e-1}$
g) $x=\ln 5$

Problem 5

a) Because $\ln x$ is a strictly increasing function for $x>0$ we can insert the left hand side and the right hand side into $\ln x$ and keep the inequality. It gives $x \geqslant \ln 5$.
b) We insert the left hand side and the right hand side into $\ln x$ and keep the inequality. It gives $x \geqslant \frac{1}{2}(\ln 5-1)$.
c) Because e^{x} is a strictly increasing function we can insert the left hand side and the right hand side into e^{x} and keep the inequality. It gives $0<x<e^{-2}$.
d) We insert the left hand side and the right hand side into e^{x} and keep the inequality. It gives $3<x<3+e^{-2}$
e) All numbers on the number line (are called the real numbers and written as \mathbb{R}, i.e. $x \in \mathbb{R}$).
f) Note that the inequality only is defined for $x<\frac{2}{3}$ and for $x>7$. We insert the left and right hand side into e^{x} and keep the inequality. This gives $\frac{3 x-2}{x-7} \geqslant 1$ which we then solve: $x \leqslant-\frac{5}{2}$ or $x>7$ (and this is within the domain of definition of the inequality). Alternate way of writing: $x \in\left\langle\leftarrow,-\frac{5}{2}\right] \cup\langle 7, \rightarrow\rangle$.

Problem 6

a) horizontal asymptote:
$y=23($ when $x \rightarrow \infty)$
b) horizontal asymptote:
$y=50($ when $x \rightarrow \infty)$
c) horizontale asymptotes:
$y=100(x \rightarrow \infty)$ and $y=0(x \rightarrow-\infty)$
d) vertical asymptote: $x=10$ $\left(y \rightarrow-\infty\right.$ when $\left.x \rightarrow 10^{-}\right)$
e) vertical asymptotes: $x= \pm 20$
$\left(y \rightarrow-\infty\right.$ when $x \rightarrow-20^{-}$and $y \rightarrow-\infty$ when $\left.x \rightarrow 20^{+}\right)$
f) vertical asymptote: $x=\frac{3}{2}$, horizontal asymptote: $y=\ln 6$

Problem 7

a) $\begin{aligned} & g(x)=3 \ln (x+1), \\ & D_{g}=R_{f}=[0, \rightarrow\rangle\end{aligned}$
b) $g(x)=e^{\frac{x}{4}}+10$, $D_{g}=[0, \rightarrow\rangle$

Problem 8

a) $f(x)=-\frac{1}{5 x}$
b) $f(x)=10+\frac{1}{x-6}$
c) $f(x)=110+\frac{6}{x-8}$
d) $f(x)=3+\frac{2}{x-17}$

Problem 9

a) vertical asymptote: $x=0$, horizontal asymptote: $y=0$
b) vertical asymptote: $x=6$, horizontal asymptote: $y=10$
c) vertical asymptote: $x=8$, horizontal asymptote: $y=110$
d) vertical asymptote: $x=17$, horizontal asymptote: $y=3$

Problem 10

a) $f(x)=4+\frac{2}{x-3}$ so vertical asymptote: $x=3$, horizontal asymptote: $y=4$
b) $f(x)=20-\frac{10}{2 x-3}$ so vertical asymptote: $x=\frac{3}{2}$, horizontal asymptote: $y=20$
c) Since $x^{2}+3$ is positive for all $x, f(x)$ is defined for all x, so no vertical asymptote. Horizontal asymptote: $y=0$
d) $f(x)=4-\frac{4(3 x-7)}{(x-1)(x-3)}$ so vertical asymptotes: $x=1$ and $x=3$, horizontal asymptote: $y=4$
e) $f(x)=x+10+\frac{75}{x-7}$ so vertical asymptote: $x=7$, non-vertical asymptote: $y=x+10$
f) $f(x)=x+10+\frac{84}{x-8}$ so vertical asymptote: $x=8$, non-vertical asymptote: $y=x+10$

Problem 11

a) $f(x)$ has a zero between $x=4$ and $x=5$ by the intermediate value theorem because $f(4)=\sqrt{4-2}-4+3=0.41>0$ while $f(5)=\sqrt{5-2}-5+3=-0.27<0$ and the function is defined and is continuous on the whole interval.
b) $f(x)$ has a zero between $x=5$ and $x=6$ by the intermediate value theorem because $f(5)=-0.80$ while $f(6)=0.69>0$ and the function is defined and is continuous on the whole interval.
Note: $f(15)=-0.52<0$ together with $f(6)>0$ tell that $f(x)$ has a zero between $x=6$ and $x=15$. So $\mathrm{f}(\mathrm{x})$ has at least 2 zeros on the interval [5, 15].
c) $f(x)=\frac{2}{x-3}$ har no zeros on the interval $I=[2,4]$ because the equation $\frac{2}{x-3}=0$ has no solutions. Note: We can not use the intermediate value theorem even if $f(2)=-2<0$ and $f(4)=2>0$ because $f(x)$ is not defined on the whole interval (even if $f(x)$ er continuous for all x where it is defined).

