... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.

 $\ln \sqrt[10]{6}$

R. Lucas

Lecture 10

on Wednesday 7 Sept. 10-11.45 in B2-060 Sec. 5.3, 4.9-10: Inverse functions. Exponential functions. Logarithms.

Here are recommended exercises from the textbook [SHSC].

Section **5.3** exercise 1, 3-5, 7, 9, 10 Section **4.9** exercise 1-4, 8-10 Section **4.10** exercise 1, 2, 6

Problems for the exercise session Wednesday 7 Oct. at 12-15 in CU1-067 or on Zoom

Problem 1 Suppose g(x) is the inverse function of f(x). Determine:

a) g(10) if f(3) = 10b) f(g(5))c) $f(\sqrt{2})$ if $g(3) = \sqrt{2}$ d) g(f(9))

Problem 2 Determine the inverse function g(x) and the domain D_g of the function f(x) with domain D_f .

a) f(x) = 2x - 3 with $D_f = \text{all numbers}$ b) f(x) = 0.5x + 1.5 with $D_f = \text{all numbers}$ c) $f(x) = x^2 + 6x$ with $D_f = \text{all numbers}$ d) $f(x) = 20 + \frac{1}{x-3}$ with $D_f = \langle x - 1 \rangle^3 + 50$ with $D_f = [1, \rightarrow)$ $D_f = \langle 3, \rightarrow \rangle$

Problem 3 We have (approximately) $\ln 2 = 0.6931$ and $\ln 3 = 1.0986$ and $\ln 5 = 1.6094$. Use these numbers to determine the values (approximately) without using the ln-button on the calculator.

a) ln 250	b) ln 625	c) $\ln \frac{625}{216}$
-----------	-----------	--------------------------

d) $\ln \frac{1000000}{27}$	e) $\ln 130 - \ln 78$	f)
-----------------------------	-----------------------	----

Problem 4 Solve the equations.

a) $e^{x} = 5$ b) $e^{2x+1} = 5$ c) $e^{2x+1} = 3e^{x+2}$ d) $\ln(x) = -2$ e) $\ln(7x-3) = -2$ f) $\ln(x-3) = \ln(2x+1) + 1$ g) $e^{2x} - 4e^{x} - 5 = 0$

Problem 5 Solve the inequalities.

a) $e^x \ge 5$ b) $e^{2x+1} \ge 5$ c) $\ln(x) < -2$ d) $\ln(x-3) < -2$ e) $\frac{3e^x}{e^x+1} < 5$ f) $\ln \frac{3x-2}{x-7} \ge 0$ Problem 6 Determine the asymptotes of the function.

- a) $f(x) = e^{-0.1x} + 23$ b) $f(x) = e^{x(10-x)} + 50$ c) $f(x) = \frac{100e^{0.04x}}{e^{0.04x} + 50}$ d) $f(x) = \ln(10-x)$ e) $f(x) = \ln(x^2 - 400)$
- f) $f(x) = \ln(120x + 10) \ln(20x 30), D_f = \langle \frac{3}{2}, \rightarrow \rangle$

Problem 7 Determine the inverse function g(x) and the domain D_g of the function f(x) with domain D_f .

(a) $f(x) = e^{\frac{x}{3}} - 1$ with $D_f = [0, \to)$ (b) $f(x) = 4\ln(x - 10)$ with $D_f = [11, \to)$

Problem 8 Determine the expression $f(x) = c + \frac{a}{x-b}$ of the hyperbolas (a-d) in figure 1.

Figure 1: Hyperbolas a-d

Problem 9 Determine the asymptotes of the hyperbolas (a-d) in Problem 8.Problem 10 Determine the asymptotes of the rational functions.

a) $f(x) = \frac{4x-10}{x-3}$ b) $f(x) = \frac{70-40x}{3-2x}$ c) $f(x) = \frac{12}{x^2+3}$ d) $f(x) = \frac{4x^2-28x+40}{x^2-4x+3}$ e) $f(x) = \frac{x^2+3x+5}{x-7}$ f) $f(x) = \frac{x^3-8}{x^2-10x+16}$

Problem 11 Determine if the function f(x) has a zero in the interval *I*. Hint: The intermediate value theorem!

a) $f(x) = \sqrt{x-2} - x + 3$ and I = [4, 5]b) $f(x) = (x-5)\sqrt{(0.2x+5)} - 0.2(x-3)^2$ and I = [5, 15]c) $f(x) = \frac{4x-10}{x-3} - 4$ and I = [2, 4]

Answers

Problem 1

a) 3	b) 5	c) 3	d) 9

Problem 2

a) g(x) = 0.5x + 1.5 with D_g = all numbers

b) g(x) = 2x - 3, D_g = all numbers

c)
$$g(x) = -3 - \sqrt{x+9}, D_g = R_f = [-9, \rightarrow)$$

d)
$$g(x) = 3 + \frac{1}{x-20}, D_g = \langle 20, \to \rangle$$

e) $g(x) = \sqrt[3]{x-50} + 1, D_g = [50, \rightarrow)$

Problem 3

- a) $\ln 250 = \ln 2 + 3 \ln 5 = 0.6931 + 3 \cdot 1.6094 = 5.5213$
- b) $\ln 625 = 4 \ln 5 = 4 \cdot 1.6094 = 6.4376$
- c) $\ln \frac{625}{216} = 4\ln 5 3(\ln 3 + \ln 2) = 4 \cdot 1.6094 3(1.0986 + 0.6931) = 1.0625$
- d) $\ln \frac{1000000}{27} = 6(\ln 5 + \ln 2) 3\ln 3 = 6 \cdot (1.6094 + 0.6931) 3 \cdot 1.0986 = 10.5192$
- e) $\ln 130 \ln 78 = \ln 5 + \ln 26 \ln 3 \ln 26 = 1.6094 1.0986 = 0.5108$

f)
$$\ln 6^{\frac{1}{10}} = \frac{1}{10} \cdot \ln 6 = \frac{1.0986 + 0.6931}{10} = 0.1792$$

Problem 4

- a) $x = \ln 5$ b) $x = \frac{1}{2}(\ln(5) - 1)$ c) $x = 1 + \ln(3)$ d) $x = e^{-2}$ e) $x = \frac{e^{-2} + 3}{7}$ f) $x = -\frac{e+3}{2e-1}$
- g) $x = \ln 5$

Problem 5

- a) Because $\ln x$ is a strictly increasing function for x > 0 we can insert the left hand side and the right hand side into $\ln x$ and keep the inequality. It gives $x \ge \ln 5$.
- b) We insert the left hand side and the right hand side into $\ln x$ and keep the inequality. It gives $x \ge \frac{1}{2}(\ln 5 1)$.
- c) Because e^x is a strictly increasing function we can insert the left hand side and the right hand side into e^x and keep the inequality. It gives $0 < x < e^{-2}$.
- d) We insert the left hand side and the right hand side into e^x and keep the inequality. It gives $3 < x < 3 + e^{-2}$.
- e) All numbers on the number line (are called the real numbers and written as \mathbb{R} , i.e. $x \in \mathbb{R}$).
- f) Note that the inequality only is defined for $x < \frac{2}{3}$ and for x > 7. We insert the left and right hand side into e^x and keep the inequality. This gives $\frac{3x-2}{x-7} \ge 1$ which we then solve: $x \le -\frac{5}{2}$ or x > 7 (and this is within the domain of definition of the inequality). Alternate way of writing: $x \in \langle \leftarrow, -\frac{5}{2} \rceil \cup \langle 7, \rightarrow \rangle$.

Problem 6

a) horizontal asymptote:	b) horizontal asymptote:	c) horizontale asymptotes:
$y = 23$ (when $x \to \infty$)	$y = 50$ (when $x \to \infty$)	$y = 100 \ (x \to \infty)$ and
		$y = 0 (x \rightarrow -\infty)$

- d) vertical asymptote: x = 10 e) vertical asymptotes: $x = \pm 20$ $(y \to -\infty \text{ when } x \to 10^{-})$ $(y \to -\infty \text{ when } x \to -20^{-} \text{ and } y \to -\infty \text{ when } x \to 20^{+})$
- f) vertical asymptote: $x = \frac{3}{2}$, horizontal asymptote: $y = \ln 6$

Problem 7

a) $g(x) = 3\ln(x+1)$, b) $g(x) = e^{\frac{x}{4}} + 10$, $D_g = R_f = [0, \rightarrow)$ $D_g = [0, \rightarrow)$

Problem 8

a) $f(x) = -\frac{1}{5x}$ b) $f(x) = 10 + \frac{1}{x-6}$ c) $f(x) = 110 + \frac{6}{x-8}$ d) $f(x) = 3 + \frac{2}{x-17}$ Problem 9

a) vertical asymptote: x = 0, horizontal asymptote: y = 0

- b) vertical asymptote: x = 6, horizontal asymptote: y = 10
- c) vertical asymptote: x = 8, horizontal asymptote: y = 110
- d) vertical asymptote: x = 17, horizontal asymptote: y = 3

Problem 10

- a) f(x) = 4 + ²/_{x-3} so vertical asymptote: x = 3, horizontal asymptote: y = 4
 b) f(x) = 20 ¹⁰/_{2x-3} so vertical asymptote: x = ³/₂, horizontal asymptote: y = 20
 c) Since x² + 3 is positive for all x, f(x) is defined for all x, so no vertical asymptote. Horizontal asymptote: y = 0
- asymptote: y = 0d) $f(x) = 4 \frac{4(3x-7)}{(x-1)(x-3)}$ so vertical asymptotes: x = 1 and x = 3, horizontal asymptote: y = 4e) $f(x) = x + 10 + \frac{75}{x-7}$ so vertical asymptote: x = 7, non-vertical asymptote: y = x + 10f) $f(x) = x + 10 + \frac{84}{x-8}$ so vertical asymptote: x = 8, non-vertical asymptote: y = x + 10

Problem 11

- a) f(x) has a zero between x = 4 and x = 5 by the intermediate value theorem because $f(4) = \sqrt{4-2} - 4 + 3 = 0.41 > 0$ while $f(5) = \sqrt{5-2} - 5 + 3 = -0.27 < 0$ and the function is defined and is continuous on the whole interval.
- b) f(x) has a zero between x = 5 and x = 6 by the intermediate value theorem because f(5) = -0.80 while f(6) = 0.69 > 0 and the function is defined and is continuous on the whole interval.

Note: f(15) = -0.52 < 0 together with f(6) > 0 tell that f(x) has a zero between x = 6 and x = 15. So f(x) has at least 2 zeros on the interval [5, 15].

c) $f(x) = \frac{2}{x-3}$ has no zeros on the interval I = [2, 4] because the equation $\frac{2}{x-3} = 0$ has no solutions. Note: We can not use the intermediate value theorem even if f(2) = -2 < 0 and f(4) = 2 > 0 because f(x) is not defined on the whole interval (even if f(x) er continuous for all x where it is defined).