Key Problems

Problem 1.

Determine the number of solutions of the linear system for each value of the parameter *a*:

	x	+	3y	+	az	=	0		2x	+	ay	_	z	=	a-5
a)	2x	_	ay	+	3z	=	0	b)	-x	+	2y	+	az	=	-3
	3x	+	2y	+	4z	=	0		ax	_	y	+	2z	=	a + 10

Problem 2.

We start with a quadratic matrix A, perform an elementary row operation, and obtain a new matrix B. Is it always the case that |A| = |B|? Give reasons why/why not, and give examples.

Problem 3.

Determine when the system has exactly one solution, og use Kramer's rule to find the solutions in these cases:

Problem 4.

Determine the number of solutions of the linear system for each value of the parameter a, and find the solutions when the system is consistent:

Problem 5.

We consider the vectors given by

$$\mathbf{u} = \begin{pmatrix} 1\\ 2 \end{pmatrix}, \quad \mathbf{v} = \begin{pmatrix} 3\\ 1 \end{pmatrix}, \quad \mathbf{w} = \begin{pmatrix} -1\\ 5 \end{pmatrix}$$

Draw the vectors in a 2-dimensional coordinate system. The compute the following vectors, and show them in the same coordinate system:

a) $\mathbf{u} + \mathbf{v}$ b) $\mathbf{v} + \mathbf{w}$ c) $\mathbf{v} - \mathbf{w}$ d) $2\mathbf{u}$ e) $-\mathbf{v}$ f) $3\mathbf{u} + \mathbf{w}$

Problem 6.

Solve the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$ for the vectors below. Is **b** a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$?

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 3\\1\\4 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\7\\-8 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2\\-1\\5 \end{pmatrix}$$

Problem 7.

Solve the vector equation $x_1\mathbf{v}_1 + x_2\mathbf{v}_2 + x_3\mathbf{v}_3 = \mathbf{b}$ when the vectors are given by

$$\mathbf{v}_1 = \begin{pmatrix} 1\\2\\-1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 3\\1\\4 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\7\\a \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 2\\-1\\5 \end{pmatrix}$$

Problem 8.

We consider the vectors $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ and \mathbf{b} given below. Determine all (a, b, c, d) such that \mathbf{b} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$. Then use this to determine whether \mathbf{b} is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ when (a, b, c, d) = (0, 0, 1, 1).

$$\mathbf{v}_1 = \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}, \quad \mathbf{v}_2 = \begin{pmatrix} 1\\2\\4\\3 \end{pmatrix}, \quad \mathbf{v}_3 = \begin{pmatrix} 1\\-1\\1\\7 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} a\\b\\c\\d \end{pmatrix}$$

Problem 9.

You have 400.000 kr and want to invest in a portfolio of securities. You may choose a combination of the shares A, B, C with prices $p_A = 60$ kr, $p_B = 75$ kr and $p_C = 320$ kr per share at the time of the investment. We estimate that at a given time in the future, one of three scenarios will occur. The prices of the shares in each scenario are given in the table below. We write x, y, z for the number of shares you buy in the shares A, B, C. For simplicity

	Pris A	Pris B	Pris C
Initial price	60	75	320
Scenario 1	80	80	350
Scenario 2	100	25	500
Scenario 3	40	100	55

we assume that x, y, z can be any real numbers. Hence, we allow to buy a negative number of shares (short-selling) and to buy a non-integer number of shares.

- a. We assume that the condition 60x + 75y + 320z = 400.000 is met. What does it mean?
- b. We write R_1 , R_2 og R_3 for the return of the portfolio in each of the three scenarios. Is it possible to choose the portfolio such that $(R_1, R_2, R_3) = (50.000, 25.000, -100.000)$? If so, determine the portfolio that we have to buy.
- c. Is it possible to choose a portfolio such that $R_1 > 0$ and $R_2 = R_3 = 0$? If so, which portfolio should we buy? Interpret the answer.
- d. Describe all triples (R_1, R_2, R_3) of possible returns in the three scenarios. Are there are any portfolios such that $R_1, R_2, R_3 > 0$?

Problem 10.

Optional: Problems from [Eriksen] (norwegian textbook) Problem 6.4.4 - 6.4.7, 6.5.2 - 6.5.3 (textbook) 9.19 - 9.22, 9.24, 9.26 (workbook)

Answers to Key Problems

Problem 1.

a) Infinitely many solutions for $a = \pm 1$, a unique solution for $a \neq \pm 1$

b) Infinitely many solutions for a = -1, a unique solution for $a \neq -1$

Problem 2.

If the operation $A \to B$ is to add a multiple of one row to another row, then |A| = |B|. If we switch two rows, then |B| = -|A|. If we multiply one row with $c \neq 0$, then $|B| = c \cdot |A|$.

Problem 3.

a)
$$(x,y) = \left(\frac{12-a}{4-a^2}, \frac{1-3a}{4-a^2}\right)$$
 for $a \neq \pm 2$ b) $(x,y) = \left(\frac{a-2}{a^2+1}, \frac{2a+1}{a^2+1}\right)$ for all a

Problem 4.

a) No solutions for a = 7, one solution $(x,y,z) = \left(\frac{17}{a-7}, \frac{-a-61}{a-7}, \frac{4a+23}{a-7}\right)$ for $a \neq 7$.

b) No solutions for a = 1, infinitely many solutions (x,y,z) = (z - 4/3, z - 5/3, z) with z free for a = -2, and one solution for $a \neq 1, -2$ given by

$$(x,y,z) = \left(\frac{1}{a-1}, \frac{2}{a-1}, \frac{-3}{a-1}\right)$$

Problem 5.

a)
$$\begin{pmatrix} 4\\ 3 \end{pmatrix}$$
 b) $\begin{pmatrix} 2\\ 6 \end{pmatrix}$ c) $\begin{pmatrix} 4\\ -4 \end{pmatrix}$ d) $\begin{pmatrix} 2\\ 4 \end{pmatrix}$ e) $\begin{pmatrix} -3\\ -1 \end{pmatrix}$ f) $\begin{pmatrix} 2\\ 11 \end{pmatrix}$

Problem 6.

The general solution is (x,y,z) = (-4z - 1, z + 1, z) with z free. A particular solution is given by (for example) letting z = 0, which gives (-1,1,0), and this means that $\mathbf{b} = -1 \cdot \mathbf{v}_1 + 1 \cdot \mathbf{v}_2$ is a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$.

Problem 7.

For a = -8, there are infinitely many solutions (x,y,z) = (-4z - 1, z + 1, z) with z free. For $a \neq -8$, there is exactly one solution (x,y,z) = (-1,1,0).

Problem 8.

It is a linear combination if and only if -7a + 9b - 5c + 3d = 0, and (a,b,c,d) = (0,0,1,1) does not satisfy this equation. Hence **b** is not a linear combination of $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ in this case.

Problem 9.

- a. This is a budget condition (the total cost of the shares we buy is 400.000 kr).
- b. Yes, we may choose $(x,y,z) = (1187 \frac{1}{2}, 2250, 500)$.
- c. Yes, if $R_1 = 80.000$. We may choose $(x, y, z) = (3333 \frac{1}{3}, 2666 \frac{2}{3}, 0)$. This means that we may invest without risking to lose money, and with positive expected return (a very fortunate situation for us!)
- d. The possible (R_1, R_2, R_3) satisfy the equation $5R_1 2R_2 2R_3 = 400.000$. We may choose $R_1, R_2, R_3 > 0$ (a positive return in all possible scenarios), for example $R_1 = R_2 = R_3 = 400.000$.