Key Problems

Problem 1.

Determine the number of solutions of the linear system for each value of the parameter a :
a) $\begin{aligned} x+3 y+a z & =0 \\ 2 x-a y+3 z & =0 \\ 3 x+2 y+4 z & =0\end{aligned}$
$2 x+a y-z=a-5$
b) $-x+2 y+a z=-3$
$a x-y+2 z=a+10$

Problem 2.

We start with a quadratic matrix A, perform an elementary row operation, and obtain a new matrix B. Is it always the case that $|A|=|B|$? Give reasons why/why not, and give examples.

Problem 3.

Determine when the system has exactly one solution, og use Kramer's rule to find the solutions in these cases:
a) $\begin{aligned} x+a y & =3 \\ a x+4 y & =1\end{aligned}$
b) $\begin{aligned} a x+y & =1 \\ -x+a y & =2\end{aligned}$

Problem 4.

Determine the number of solutions of the linear system for each value of the parameter a, and find the solutions when the system is consistent:
$x+y+z=3$
$a x+y+z=1$
a) $a x+4 y+3 z=25$ $a x+y-z=12$
b) $x+a y+z=2$
$x+y+a z=-3$

Problem 5.

We consider the vectors given by

$$
\mathbf{u}=\binom{1}{2}, \quad \mathbf{v}=\binom{3}{1}, \quad \mathbf{w}=\binom{-1}{5}
$$

Draw the vectors in a 2-dimensional coordinate system. The compute the following vectors, and show them in the same coordinate system:
a) $\mathbf{u}+\mathbf{v}$
b) $\mathbf{v}+\mathbf{w}$
c) $\mathbf{v}-\mathbf{w}$
d) $2 \mathbf{u}$
e) $-\mathbf{v}$
f) $3 \mathbf{u}+\mathbf{w}$

Problem 6.

Solve the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{b}$ for the vectors below. Is \mathbf{b} a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$?

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
7 \\
-8
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)
$$

Problem 7.

Solve the vector equation $x_{1} \mathbf{v}_{1}+x_{2} \mathbf{v}_{2}+x_{3} \mathbf{v}_{3}=\mathbf{b}$ when the vectors are given by

$$
\mathbf{v}_{1}=\left(\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
3 \\
1 \\
4
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{l}
1 \\
7 \\
a
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
2 \\
-1 \\
5
\end{array}\right)
$$

Problem 8.

We consider the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ and \mathbf{b} given below. Determine all (a, b, c, d) such that \mathbf{b} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$. Then use this to determine whether \mathbf{b} is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ when $(a, b, c, d)=(0,0,1,1)$.

$$
\mathbf{v}_{1}=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \mathbf{v}_{2}=\left(\begin{array}{l}
1 \\
2 \\
4 \\
3
\end{array}\right), \quad \mathbf{v}_{3}=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
7
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
a \\
b \\
c \\
d
\end{array}\right)
$$

Problem 9.

You have 400.000 kr and want to invest in a portfolio of securities. You may choose a combination of the shares $\mathrm{A}, \mathrm{B}, \mathrm{C}$ with prices $p_{A}=60 \mathrm{kr}, p_{B}=75 \mathrm{kr}$ and $p_{C}=320 \mathrm{kr}$ per share at the time of the investment. We estimate that at a given time in the future, one of three scenarios will occur. The prices of the shares in each scenario are given in the table below. We write x, y, z for the number of shares you buy in the shares A, B, C. For simplicity

	Pris A	Pris B	Pris C
Initial price	60	75	320
Scenario 1	80	80	350
Scenario 2	100	25	500
Scenario 3	40	100	55

we assume that x, y, z can be any real numbers. Hence, we allow to buy a negative number of shares (short-selling) and to buy a non-integer number of shares.
a. We assume that the condition $60 x+75 y+320 z=400.000$ is met. What does it mean?
b. We write R_{1}, R_{2} og R_{3} for the return of the portfolio in each of the three scenarios. Is it possible to choose the portfolio such that $\left(R_{1}, R_{2}, R_{3}\right)=(50.000,25.000,-100.000)$? If so, determine the portfolio that we have to buy.
c. Is it possible to choose a portfolio such that $R_{1}>0$ and $R_{2}=R_{3}=0$? If so, which portfolio should we buy? Interpret the answer.
d. Describe all triples $\left(R_{1}, R_{2}, R_{3}\right)$ of possible returns in the three scenarios. Are there are any portfolios such that $R_{1}, R_{2}, R_{3}>0$?

Problem 10.

Optional: Problems from [Eriksen] (norwegian textbook)
Problem 6.4.4-6.4.7, 6.5.2-6.5.3 (textbook) 9.19-9.22, 9.24, 9.26 (workbook)

Answers to Key Problems

Problem 1.

a) Infinitely many solutions for $a= \pm 1$, a unique solution for $a \neq \pm 1$
b) Infinitely many solutions for $a=-1$, a unique solution for $a \neq-1$

Problem 2.

If the operation $A \rightarrow B$ is to add a multiple of one row to another row, then $|A|=|B|$. If we switch two rows, then $|B|=-|A|$. If we multiply one row with $c \neq 0$, then $|B|=c \cdot|A|$.

Problem 3.

a) $(x, y)=\left(\frac{12-a}{4-a^{2}}, \frac{1-3 a}{4-a^{2}}\right)$ for $a \neq \pm 2$
b) $(x, y)=\left(\frac{a-2}{a^{2}+1}, \frac{2 a+1}{a^{2}+1}\right)$ for all a

Problem 4.

a) No solutions for $a=7$, one solution $(x, y, z)=\left(\frac{17}{a-7}, \frac{-a-61}{a-7}, \frac{4 a+23}{a-7}\right)$ for $a \neq 7$.
b) No solutions for $a=1$, infinitely many solutions $(x, y, z)=(z-4 / 3, z-5 / 3, z)$ with z free for $a=-2$, and one solution for $a \neq 1,-2$ given by

$$
(x, y, z)=\left(\frac{1}{a-1}, \frac{2}{a-1}, \frac{-3}{a-1}\right)
$$

Problem 5.

a) $\binom{4}{3}$
b) $\binom{2}{6}$
c) $\binom{4}{-4}$
d) $\binom{2}{4}$
e) $\binom{-3}{-1}$
f) $\binom{2}{11}$

Problem 6.

The general solution is $(x, y, z)=(-4 z-1, z+1, z)$ with z free. A particular solution is given by (for example) letting $z=0$, which gives $(-1,1,0)$, and this means that $\mathbf{b}=-1 \cdot \mathbf{v}_{1}+1 \cdot \mathbf{v}_{2}$ is a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$.

Problem 7.

For $a=-8$, there are infinitely many solutions $(x, y, z)=(-4 z-1, z+1, z)$ with z free. For $a \neq-8$, there is exactly one solution $(x, y, z)=(-1,1,0)$.

Problem 8.

It is a linear combination if and only if $-7 a+9 b-5 c+3 d=0$, and $(a, b, c, d)=(0,0,1,1)$ does not satisfy this equation. Hence \mathbf{b} is not a linear combination of $\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}$ in this case.

Problem 9.

a. This is a budget condition (the total cost of the shares we buy is 400.000 kr).
b. Yes, we may choose $(x, y, z)=(11871 / 2,2250,500)$.
c. Yes, if $R_{1}=80.000$. We may choose $(x, y, z)=\left(3333^{1 / 3}, 2666^{2} / 3,0\right)$. This means that we may invest without risking to lose money, and with positive expected return (a very fortunate situation for us!)
d. The possible $\left(R_{1}, R_{2}, R_{3}\right)$ satisfy the equation $5 R_{1}-2 R_{2}-2 R_{3}=400.000$. We may choose $R_{1}, R_{2}, R_{3}>0$ (a positive return in all possible scenarios), for example $R_{1}=R_{2}=R_{3}=400.000$.

