Key Problems

Problem 1.

Assume that A and B are 3×3-matrices with $|A|=2$ and $|B|=-5$. Compute the determinants:
a) $\operatorname{det}(A B)$
b) $\operatorname{det}(3 A)$
c) $\operatorname{det}\left(-2 B^{T}\right)$
d) $\operatorname{det}\left(2 A^{-1} B\right)$

Problem 2.

Let A be a 2×3-matrix.
a) Is A symmetric?
b) Is $A^{T} A$ symmetric?
c) Compute $A^{T} A$ when $A=\left(\begin{array}{ccc}1 & -1 & 3 \\ 3 & 3 & 1\end{array}\right)$.

Problem 3.

Exam MET11803 12/2018
We consider the linear system $A \cdot \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
a & 1 & a \\
1 & 2 & 3 \\
a & 3 & 0
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{c}
1 \\
-a \\
3-a
\end{array}\right)
$$

and a is a parameter.
a) (6p) Solve the linear system when $a=1$.
b) (6p) Find the determinant $\operatorname{det}(A)$, and determine all values of a such that $\operatorname{det}(A)=0$.
c) (6p) Determine all values of a such that $A \cdot \mathbf{x}=\mathbf{b}$ has infinitely many solutions.
d) ($6 \mathbf{p}$) Compute $A^{2}-3 A$ when $a=1$.

Problem 4.

Exam MET11803 06/2016
We consider the linear system $A \cdot \mathbf{x}=\mathbf{b}$, where

$$
A=\left(\begin{array}{ccc}
2-s & 3 & 3 \\
3 & 2-s & 3 \\
3 & 3 & 2-s
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x \\
y \\
z
\end{array}\right) \quad \text { og } \quad \mathbf{b}=\left(\begin{array}{c}
3 \\
s+4 \\
1-2 s
\end{array}\right)
$$

We consider s as a parameter and x, y, z as variables.
a) (6p) Solve the linear system when $s=8$. How many degrees of freedom are there?
b) (6p) Compute $|A|$ for a general value of s.
c) $(6 \mathbf{p})$ Find A^{-1} when $s=0$, and use A^{-1} to solve the linear system in this case.
d) (6p) Determine all values of s such that the linear system has exactly one solution, and find x in these cases.

Answers to Key Problems

Problem 1.

a) -10
b) 54
c) 40
d) -20

Problem 2.

a) No
b) Yes
c) $\left(\begin{array}{ccc}10 & 8 & 6 \\ 8 & 10 & 0 \\ 6 & 0 & 10\end{array}\right)$

Problem 3.

a) $(x, y, z)=(2,0,-1)$
b) $|A|=-a(2 a+3)$, and $|A|=0$ for $a=0$ and $a=-3 / 2$
c) $a=0$
d) $\left(\begin{array}{ccc}0 & 3 & 1 \\ 3 & 8 & -2 \\ 1 & -2 & 10\end{array}\right)$

Problem 4.

a) There is one degree of freedom for $s=8$, and the solutions are given by $(x, y, z)=(z-2, z-3, z)$ where z is free.
b) $|A|=-s^{3}+6 s^{2}+15 s+8$
c) $A^{-1}=\frac{1}{8}\left(\begin{array}{ccc}-5 & 3 & 3 \\ 3 & -5 & 3 \\ 3 & 3 & -5\end{array}\right)$ and $(x, y, z)=(0,-1,2)$ for $s=0$.
d) For $s \neq-1,8$, the system has exactly one solution with x-coordinate $x=0$.

