... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.

R. Lucas

Lecture 8 on Wednesday 30 Sept. 10-11.45 in B2-060 Sec. 6.3.1-3, 5.4-5, 4.7 Increasing/decreasing functions. Circles, ellipses. Polynomial functions.

Here are recommended exercises from the textbook [SHSC].

Section **6.3** exercise 3 Section **5.4** exercise 1, 3 Section **5.5** exercise 1-6 Section **4.7** exercise 4

Problems for the exercise session Wednesday 30 Sept. at 12-15 in CU1-067 or on Zoom

Problem 1 Determine the equations of the circles in figure 1.

Figure 1: Circles a-c

Problem 2 Determine the center S and the radius r of the circles.

a) $(x-3)^2 + (y-4)^2 = 5$ b) $(x+1)^2 + y^2 = 3$ c) $(3x-2)^2 + (3y-4)^2 = 9$ d) $x^2 + y^2 - 4x - 10y = -25$ e) $x^2 + y^2 + 6x - 12y = -44$ f) $25x^2 + 25y^2 - 20x - 30y = -12$

Problem 3 Determine the equations of the ellipses in figure 2.

Figure 2: Ellipses a-d

Problem 4 Determine the center *S* and the semi-axes of the ellipse. Draw a sketch of the ellipse.

a)
$$\frac{x^2}{9} + \frac{y^2}{16} = 1$$

b) $\frac{(x-1)^2}{9} + \frac{(y-2)^2}{16} = 1$
c) $16(x-1)^2 + 9(y-2)^2 = 144$
d) $\frac{x^2}{2} + y^2 - 6y = -8$
e) $9x^2 + 18x + 4y^2 = 27$
f) $4x^2 + 9y^2 - 16x + 18y = 11$
g) $25x^2 + 4y^2 - 100x - 40y = -100$

Problem 5 Give elementary arguments for the statements.

a) $f(x) = x^2$ with $x \ge 0$ is strictly increasing.

b) $f(x) = \sqrt{x}$ is strictly increasing.

c) $f(x) = \frac{1}{x}$ with x > 0 is strictly decreasing.

Problem 6 Determine the intersection points of

a) the line 3x + 2y = 12 and the line -3x + 2y = -6

b) the line 2x + y = 6 and the ellipse in Problem 4a

Problem 7 Determine which expressions (below) and graphs (in figure 3) which belong together.

1)
$$x^{4} - 8x^{3} + 24x^{2} - 32x + \frac{161}{10}$$

2) $\frac{x^{5}}{10} - \frac{3x^{4}}{2} + \frac{17x^{3}}{2} - \frac{45x^{2}}{2} + \frac{137x}{5} - 10$
3) $-x^{3} + 6x^{2} - 11x + 7$
4) $x^{4} - 10x^{3} + 35x^{2} - 50x + 26$

Figure 3: The graphs of four polynomial functions

Answers

Problem 1

a) $(x-3)^2 + (y-3)^2 = 9$	b) $(x-12)^2 + y^2 = 25$	c) $(x+3,5)^2 + (y+3)^2 = 6,25$
Problem 2		
a) $S = (3, 4), r = \sqrt{5}$	b) $S = (-1, 0), r = \sqrt{3}$	c) $S = (\frac{2}{3}, \frac{4}{3}), r = 1$
d) $S = (2, 5), r = 2$	e) $S = (-3, 6), r = 1$	f) $S = (\frac{2}{5}, \frac{3}{5}), r = \frac{1}{5}$
Problem 3		
a) $\frac{x^2}{4} + \frac{y^2}{25} = 1$	b) $\frac{(x-15)^2}{225} + \frac{(y-10)^2}{100} = 1$	c) $4(x+2,5)^2 + \frac{(y-3)^2}{4} = 1$
d) $\frac{x^2}{169} + \frac{(y-5)^2}{25} = 1$		
Problem 4		
a) $S = (0, 0)$, semi-axes $a = 3, b = 4$		

- b) S = (1, 2), semi-axes a = 3, b = 4
- c) S = (1, 2), semi-axes a = 3, b = 4
- d) S = (0, 3), semi-axes $a = \sqrt{2}$, b = 1
- e) S = (-1, 0), semi-axes a = 2, b = 3
- f) S = (2, -1), semi-axes a = 3, b = 2
- g) S = (2, 5), semi-axes a = 2, b = 5

Figure 4: Ellipses a-d and e-g

Problem 5

Department of Economics

- a) Suppose 0 ≤ x₁ < x₂. Then x₂ = x₁ + k for a positive constant k. Then f(x₂) = (x₁ + k)² = x₁² + 2kx₁ + k². The product and the sum of two positive numbers are positive numbers, hence 2kx₁ + k² is a positive number. Then f(x₁) = x₁² < x₁² + 2kx₁ + k² = f(x₂) and f(x) = x² for x ≥ 0 is strictly increasing.
 b) We divide each side of the inequality x₁ < x₂ with the positive number x₂ and get the inequality x₁ < x₂ with the positive number x₂ and get the inequality
- b) We divide each side of the inequality $x_1 < x_2$ with the positive number x_2 and get the inequality $\frac{x_1}{x_2} < 1$. The square root of a number which is less than 1 is itself less than 1, i.e. $\sqrt{\frac{x_1}{x_2}} < 1$. But $\sqrt{\frac{x_1}{x_2}} = \frac{\sqrt{x_1}}{\sqrt{x_2}}$. We get the inequality $\frac{\sqrt{x_1}}{\sqrt{x_2}} < 1$ and when we multiply each side with the positive number $\sqrt{x_2}$ we get the inequality $f(x_1) = \sqrt{x_1} < \sqrt{x_2} = f(x_2)$. Hence $f(x) = \sqrt{x}$ strictly increasing.
- c) We divide each side of the inequality $x_1 < x_2$ with the positive number x_2 and get the equivalent inequality $\frac{x_1}{x_2} < 1$. Then we divide this inequality by the positive number x_1 and get

$$f(x_2) = \frac{1}{x_2} < \frac{1}{x_1} = f(x_1)$$
. Hence $f(x) = \frac{1}{x}$ for $x > 0$ is strictly decreasing.

Problem 6

a)
$$(3, \frac{3}{2})$$
 b) $(3, 0)$ and $(\frac{15}{13}, \frac{48}{13})$

Problem 7

•
$$f(x) = -x^3 + 6x^2 - 11x + 7$$

•
$$g(x) = x^4 - 10x^3 + 35x^2 - 50x + 26$$

•
$$h(x) = \frac{x^5}{10} - \frac{3x^4}{2} + \frac{17x^3}{2} - \frac{45x^2}{2} + \frac{137x}{5} - 10$$

•
$$i(x) = x^4 - 8x^3 + 24x^2 - 32x + \frac{161}{10}$$