EBA2911 Mathematics for Business Analytics autumn 2021

Exercises

I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.

R. Lucas

Lecture 14

on Wednesday 10 Nov. at 10-11.45 Sec. 7.1, 6.9, 8.6-7:

Implicit differentiation. The second order derivative, convex/concave functions.

Here are recommended exercises from the textbook [SHSC].

Section 7.1 exercise 1, 4, 6, 7a

Section 6.9 exercise 1-4

Section 9.6 exercise 1-4, 6a

Section 8.6 exercise 1-4

Problems for the exercise session Wednesday 10 Nov. in B2-050 (12-16.45) or on Zoom

Problem 1 Find an expression for y' in terms of y and x by implicit differentiation. Find all solutions for y with x = a and determine the expression for the tangent function in each of these points.

a)
$$x^2 + 25y^2 - 50y = 0$$
 and $a = 4$

b)
$$x^{3.27}y^{1.09} = 1$$
 and $a = 1$

c)
$$x^4 - x^2 + y^4 = 0$$
 and $a = \frac{\sqrt{2}}{2}$

d)
$$x^3 - 3xy + y^2 = 0$$
 and $a = 2$

Problem 2 in figure 1 you see the graphs of the implicit defined curves in Problem 1. Determine the curves and the equations which belong together. Also draw the tangents in Problem 1.

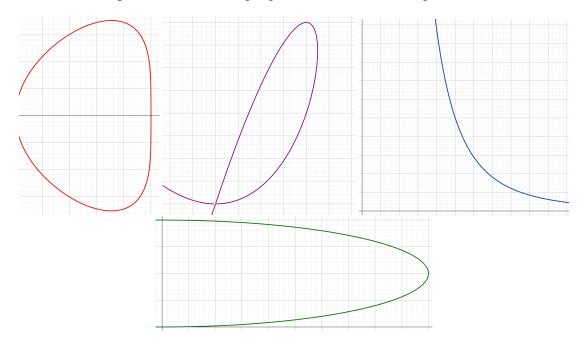


Figure 1: Four implicitly defined curves

Problem 3 Make a sketch of the graphs of **two** different functions f(x) with the given data. One of the functions should be *strictly increasing*. Note: You are not supposed two find any algebraic expression!

- a) f''(x) is negative for x < 5 and positive for x > 5
- b) f''(x) is positive for x < 10, negative for 10 < x < 15 and positive for x > 15

Problem 4 in figure 2 you see the graph of f''(x). Determine if the statement is true or false.

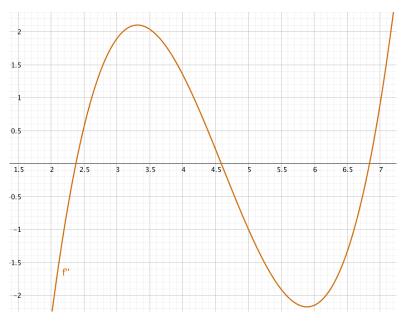


Figure 2: The graph of f''(x)

- a) f''(2.5) > f''(4)
- d) f(x) has two inflection points for $2 \le x \le 7$
- g) f'(x) decreases in the interval [4, 5]
- j) f'(2.5) < f'(4.5)

- b) f(x) is convex for $3 \le x \le 4$
- e) f(x) is concave for $6 \le x \le 6.5$
- h) f'(x) increases faster around x = 2.5 than around x = 3
- k) f(x) must have at least one minimum point

- c) f(x) has no inflection points between 5.5 and 6
- f) f'(4) is the maximum of f'(x) for $x \in [3, 4]$
- i) f(4) has to be positive

Problem 5 In figure 3 you see the graphs of f(x), f'(x) and f''(x) in the same coordinate system. Determine which is the graph of f(x), of f'(x) and of f''(x) in (a-c).

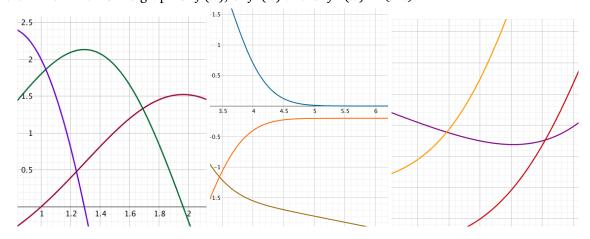


Figure 3: (a-c): The graphs of f(x), f'(x) and f''(x)

Problem 6 Calculate f'(x) and f''(x), solve the equation f''(x) = 0, determine where f(x) is convex and concave, and determine the inflection points (if any).

a)
$$f(x) = x^4 - 8x^3 + 18x^2 + 1$$
 b) $f(x) = \ln(x^2 - 2x + 2) - \frac{x}{4} + 1$

c)
$$f(x) = e^{\frac{-x^2}{2}} + x + 1$$
 d) $f(x) = x^5 - 10x^4 + 30x^3 + 2$

Problem 7 Determine the expressions for the tangent functions at the inflection points in Problem 6.

Problem 8 Determine (local) minimum and maximum points for the function f(x). Explain why these points give (global) minimum/maximum for f(x) by using convexity/concavity of the function. Calculate the minimum/maximimum of the function.

a)
$$f(x) = \ln(-x^2 + 14x - 45)$$
 b) $f(x) = \frac{-1}{x(x - 6)}$ with c) $f(x) = e^{x(x - 4)}$ with with $D_f = \langle 5, 9 \rangle$ $D_f = \langle 0, 6 \rangle$ $D_f = \mathbb{R}$ (all real numbers)

c)
$$f(x) = e^{x(x-4)}$$
 with $D_f = \mathbb{R}$ (all real numbers)

Problem 9 Compute the expression for the derivative of f(x).

a)
$$f(x) = \sqrt{x^2 - 7x + 13}$$

b)
$$f(x) = xe^{0.1x^2}$$

c)
$$f(x) = (2x+5)^{100}$$

d)
$$f(x) = \frac{\ln(x)}{x}$$

Problem 10 (Multiple choice spring 2018, problem 11)

We consider the function $f(x) = 4\sqrt{x} \ln(x)$. Which statement is true?

- (A) The function f has one inflection point
- (B) The function f has several inflection points
- (C) The function *f* is concave
- (D) The function f is convex
- (E) I choose not to solve this problem.

Answers

- a) $y' = \frac{-x}{25(y-1)}$, for x = 4: $y = \frac{2}{5}$ or $y = \frac{8}{5}$ which gives the tangent functions $h_1(x) = \frac{4}{15}x \frac{2}{3}$ and
- b) $y' = \frac{-3y}{x}$, for x = 1: y = 1 which gives the tangent function h(x) = -3x + 4c) $y' = \frac{x(1-2x^2)}{2y^3}$, for $x = \frac{\sqrt{2}}{2}$: $y = \pm \frac{\sqrt{2}}{2}$ which gives the tangent functions $h_1(x) = \frac{\sqrt{2}}{2}$ and $h_2(x) = -\frac{\sqrt{2}}{2}$
- d) $y' = \frac{3(y-x^2)}{2y-3x}$, for x = 2: y = 4 or y = 2 which gives the tangent functions $h_1(x) = 4$ and

Problem 2

- a) Green
- b) Blue
- c) Red
- d) Purple

Problem 3

Compare with other students, ask the learning assistants!

Problem 4



Figure 4: True or false, or opposite

Problem 5

- a) f(x): Dark red, f'(x): Green
- b) f(x): Olive, f'(x): Orange
- c) f(x): Violet, f'(x): Red

Problem 6

- a) $f'(x) = 4x^3 24x^2 + 36x$ and f''(x) = 12(x-1)(x-3). f''(x) = 0 has solutions x = 1 and x = 3. f(x) is convex in the interval $(\infty, 1]$, f(x) is concave in the interval [1, 3], and f(x) is
- convex in the interval $[3, \infty)$. Hence x = 1 and x = 3 are inflection points. b) $f'(x) = \frac{2x-2}{(x-1)^2+1} \frac{1}{4}$ and $f''(x) = \frac{-2x(x-2)}{[(x-1)^2+1]^2}$. f''(x) = 0 has solutions x = 0 and x = 2. f(x) is concave in the interval $(\infty, 0]$, f(x) is convex in the interval [0, 2], and f(x) is concave in the interval [2, ∞). Hence x = 0 and x = 2 are inflection points.
- c) $f'(x) = -xe^{\frac{-x^2}{2}} + 1$ and $f''(x) = (x+1)(x-1)e^{-\frac{x^2}{2}}$, f''(x) = 0 has solutions $x = \pm 1$, f(x) is convex in the interval $(\infty, -1]$, f(x) is concave in the interval [-1, 1], and f(x) is convex in the interval $[1, \infty)$. Hence x = -1 and x = 1 are inflection points.
- d) $f'(x) = 5x^4 40x^3 + 90x^2$ and $f''(x) = 20x(x-3)^2$. f''(x) = 0 has solutions x = 0 and x = 3(a double root). f(x) is concave in the interval $(\infty, 0]$ and f(x) is convex in the interval $[0, \infty)$. Hence x = 0 is the only inflection point.

Problem 7

- a) Inflection point tangents: $h_1(x) = 16x 4$ and $h_3(x) = 28$
- b) Inflection point tangents: $h_0(x) = -1.25x + \ln(2) + 1$ and $h_2(x) = 0.75x + \ln(2) 1$ c) Inflection point tangents: $h_{-1}(x) = (1 + e^{-0.5})x + 2e^{-0.5} + 1$ and $h_1(x) = (1 e^{-0.5})x + 2e^{-0.5} + 1$
- d) Inflection point tangent: $h_0(x) = 2$

Problem 8

- a) $f'(x) = \frac{2(7-x)}{-x^2+14x-45}$ which changes sign from + to at x = 7. $f''(x) = \frac{-2[(x-7)^2+4]}{(-x^2+14x-45)^2}$ is negative for all x, so f(x) is concave, max: $f(7) = 2\ln(2) = 1.39$
- b) $f'(x) = \frac{2x-6}{x^2(x-6)^2}$ which changes sign from to + at x = 3. $f''(x) = \frac{-6[(x-3)^2+3]}{x^3(x-6)^3}$ is positive for all $x \in (0, 6)$, so f(x) is convex, min: $f(3) = \frac{1}{9} = 0.11$
- c) $f'(x) = 2(x-2)e^{x(x-4)}$ which changes sign from to + at x = 2. $f''(x) = 4[(x-2)^2 + \frac{1}{2}]e^{x(x-4)}$ is positive for all x, so f(x) is convex, min: $f(2) = e^{-4} = 0.02$

Problem 9

a)
$$f'(x) = \frac{2x - 7}{2\sqrt{x^2 - 7x + 13}}$$

b) $f'(x) = \frac{1}{5}(x^2 + 5)e^{0.1x^2}$
c) $f'(x) = 200(2x + 5)^{99}$
d) $f'(x) = \frac{1 - \ln(x)}{x^2}$

Problem 10 A