EBA2911 Mathematics for Business Analytics autumn 2021

Exercises

... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.

R. Lucas

Lecture 7 on Wednesday 29 Sept. 10-11.45 Sec. 4.1-6

Functions and graphs. Linear and quadratic functions. Revenue and cost functions.

Here are recommended exercises from the textbook [SHSC].

Section 4.2 exercise 1-6, 13-15

Section **4.3** exercise 1-3

Section 4.4 exercise 1-10

Section 4.6 exercise 1-7

Problems for the exercise session Wednesday 29 Sept. at 12-15 in D1-065 (or on Zoom)

Problem 1 Determine the expression of the linear function f(x) in figure 1.

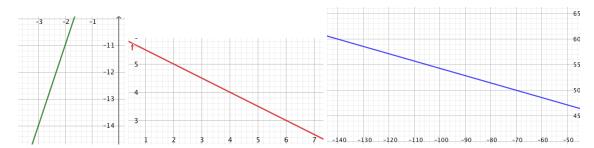


Figure 1: Linear functions (a-c)

Problem 2 Determine the intersection points of the graph and the *x*-axis and of the graph and the y-axis in Problem 1 a-c.

Problem 3 Determine the expression of the linear function f(x) such that the graph passes through the points P and Q.

a)
$$P = (-2, 5)$$
 and $Q = (-4, 6)$

b)
$$P = (80, 90)$$
 and $Q = (50, 80)$

c)
$$P = (4, -3)$$
 and $Q = (-1, 7)$

Problem 4 Determine the expression of the linear function f(x) such that the graph passes through the point P and has slope a.

a)
$$P = (-2, 5)$$
 and $a = \frac{2}{3}$

b)
$$P = (8, 90)$$
 and $a = \frac{1}{10}$

b)
$$P = (8, 90)$$
 and $a = \frac{1}{10}$ c) $P = (4, 30)$ and $a = -\frac{3}{10}$

Problem 5 Determine the expression of the second degree polynomial function f(x) in a-f, see

Problem 6 Determine the intersection points of the graph and the *x*-axis and of the graph and the *y*-axis in Problem 5 c-f.

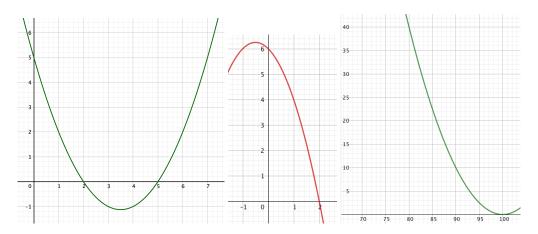


Figure 2: Parabolas (a-c)

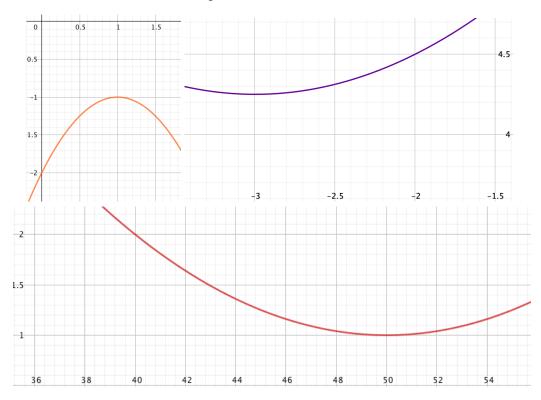


Figure 3: Parabolas (d-f)

Problem 7 Determine the expression of the second degree polynomial function f(x) such that:

- a) The graph passes through the points P = (0, 7), Q = (1, 4) and R = (2, 3).
- b) The graph passes through the points P = (-5, 65), Q = (3, 65) and R = (7, 17).
- c) The graph passes through the point P = (4, -6) and $Q = (\frac{13}{2}, -\frac{49}{4})$ is the point where the function attains its minimum.

Problem 8 Write f(x) in the form $a(x-s)^2 + d$ (by 'completing the square') and use the expression to sketch the graph. In particular determine the symmetry axis of the parabola and the maximum or minimum value.

a)
$$f(x) = x^2 - 10x + 30$$

b)
$$f(x) = 3x^2 + 36x + 110$$
 c) $f(x) = -\frac{1}{7}x^2 + 2x - 6$

c)
$$f(x) = -\frac{1}{7}x^2 + 2x - 6$$

Problem 9 Suppose x is the number of units produced and sold. Determine the value of p (the unit price) which gives positive profit for x > 300 and negative profit for x < 300 if:

- a) The cost function is C(x) = 2100 + 5x and the revenue function is R(x) = px.
- b) The cost function is $C(x) = 4500 5x + 0.01x^2$ and the revenue function is R(x) = px (both with $0 \le x \le 1000$ as domain of definition).

Answers

Problem 1

- a) f(x) = 3x 5
- b) $f(x) = -\frac{x}{2} + 6$
- c) $f(x) = -\frac{x}{7} + 40$

Problem 2

- a) $x = \frac{5}{3}$ and y = -5
- b) x = 12 and y = 6
- c) x = 280 and y = 40

Problem 3

- a) $f(x) = -\frac{1}{2}x + 4$
- b) $f(x) = \frac{1}{3}x + \frac{190}{3}$
- c) f(x) = -2x + 5

Problem 4

- a) $f(x) = \frac{2}{3}x + \frac{19}{3}$ b) $f(x) = \frac{1}{10}x + \frac{446}{5}$ c) $f(x) = -\frac{3}{10}x + \frac{156}{5}$

Problem 5

- a) $f(x) = \frac{1}{2}(x-2)(x-5) = \frac{1}{2}x^2 \frac{7}{2}x + 5$
- b) $f(x) = -(x+3)(x-2) = -x^2 x + 6$
- c) $f(x) = \frac{1}{10}(x 100)^2 = \frac{1}{10}x^2 20x + 1000$ d) $f(x) = -(x 1)^2 1 = -x^2 + 2x 2$ e) $f(x) = \frac{1}{4}(x + 3)^2 + \frac{17}{4} = \frac{1}{4}x^2 + \frac{3}{2}x + \frac{13}{2}$

- f) $f(x) = \frac{1}{100}(x-50)^2 + 1 = \frac{1}{100}x^2 x + 26$

Problem 6

- c) x = 100 and y = 1000
- d) non and y = -2
- e) non and $y = \frac{13}{2}$
- f) non and y = 26

Problem 7

- a) $(x-2)^2 + 3 = x^2 4x + 7$
- b) $-(x+1)^2 + 81 = -x^2 2x + 80$ c) $(x \frac{13}{2})^2 \frac{49}{4} = x^2 13x + 30$

Problem 8

- a) $f(x) = (x-5)^2 + 5$, the vertical line x = 5, y = 5 is the minimum value
- b) $f(x) = 3(x+6)^2 + 2$, the vertical line x = -6, y = 2 is the minimum value
- c) $f(x) = -\frac{1}{7}(x-7)^2 + 1$, the vertical line x = 7, y = 1 is the maximum value

For sketches of a-c see figure 4. A small table with relevant function values is expected.

Problem 9

- a) p = 3600/300 = 12
- b) p = 13

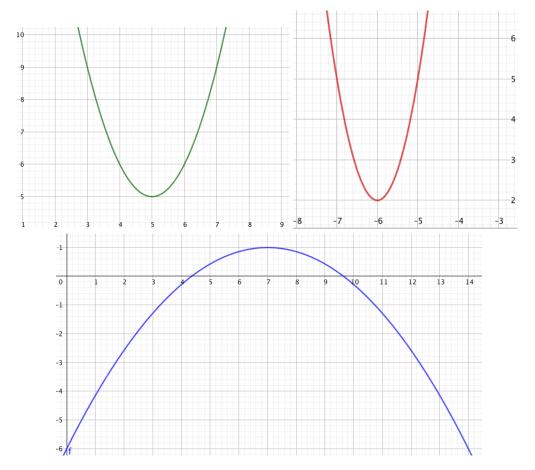


Figure 4: Parabolas in Problems 8 a-c