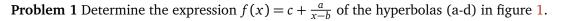
... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.


R. Lucas

Lecture 13 Sec. 4.7, 7.9: Rational functions and asymptotes.

Here are recommended exercises from the textbook [SHSC].

Section **4.7** exercise 4 Section **7.9** exercise 1-5 Section **5.2** exercise 2a, 3, 4 Section **5.3** exercise 1, 3-5, 7, 9, 10 Section **4.9** exercise 1, 2, 4, 6 Section **4.10** exercise 1, 2, 6, 8-10

Problems for the exercise session Wednesday 12 Oct. from 12-17 in B2-065

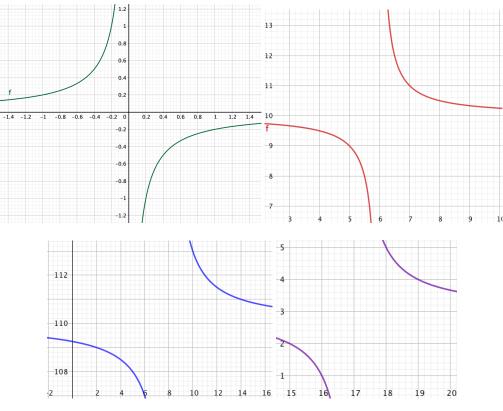
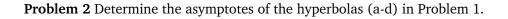



Figure 1: Hyperbolas a-d

Problem 3 Determine the asymptotes of the rational functions.

a)
$$f(x) = \frac{4x-10}{x-3}$$

b) $f(x) = \frac{70-40x}{3-2x}$
c) $f(x) = \frac{12}{x^2+3}$
d) $f(x) = \frac{4x^2-28x+40}{x^2-4x+3}$
e) $f(x) = \frac{x^2+3x+5}{x-7}$
f) $f(x) = \frac{x^3-8}{x^2-10x+16}$

Answers

Problem 1

a) $f(x) = -\frac{1}{5x}$ b) $f(x) = 10 + \frac{1}{x-6}$ c) $f(x) = 110 + \frac{6}{x-8}$ d) $f(x) = 3 + \frac{2}{x-17}$

Problem 2

- a) vertical asymptote: x = 0, horizontal asymptote: y = 0
- b) vertical asymptote: x = 6, horizontal asymptote: y = 10
- c) vertical asymptote: x = 8, horizontal asymptote: y = 110
- d) vertical asymptote: x = 17, horizontal asymptote: y = 3

Problem 3

- a) f(x) = 4 + ²/_{x-3} so vertical asymptote: x = 3, horizontal asymptote: y = 4
 b) f(x) = 20 ¹⁰/_{2x-3} so vertical asymptote: x = ³/₂, horizontal asymptote: y = 20
 c) Since x² + 3 is positive for all x, f(x) is defined for all x, so no vertical asymptote. Horizontal asymptote: y = 0
- d) $f(x) = 4 \frac{4(3x-7)}{(x-1)(x-3)}$ so vertical asymptotes: x = 1 and x = 3, horizontal asymptote: y = 4e) $f(x) = x + 10 + \frac{75}{x-7}$ so vertical asymptote: x = 7, non-vertical asymptote: y = x + 10f) $f(x) = x + 10 + \frac{84}{x-8}$ so vertical asymptote: x = 8, non-vertical asymptote: y = x + 10