EBA1180 Mathematics for Business Analytics autumn 2022

Exercises

I came to the position that mathematical analysis is not one of the many ways of doing economic theory: it is the only way.

R. Lucas

Lecture 15 - 16

Sec. 6.1-2, 6.6-8: Tangents, differentiation and rules for differentiation.

Here are recommended exercises from the textbook [SHSC].

Section **6.1** exercise 1, 2

Section 6.2 exercise 1, 6, 8

Section **6.6** exercise 1, 3

Section 6.7 exercise 1-4, 7

Section 6.8 exercise 1a, 10

Problems for the exercise session Wednesday 26 Oct. at 12-17 in B2-065

Problem 1 Make a sketch of the graphs of two different functions f(x) with the given data. Note: You are not supposed to find any algebraic expression!

a)
$$f(5) = 10, f'(5) = -1$$

b)
$$f(3) = 5$$
, $f'(3) = 2$, $f(5) = 5$, $f'(5) = 0$

c)
$$f(10) = 100$$
, $f'(10) = 0.5$, $f(20) = 40$, $f'(20) = 2$, $f'(30) = 0$

d)
$$f(1) = 3$$
, $f'(3) = -0.2$, $f(5) = 4$, $f'(7) = \frac{2}{3}$

Problem 2 Suppose $f(x) = g(x) \cdot h(x)$. Use the product rule $f'(x) = g'(x) \cdot h(x) + g(x) \cdot h'(x)$ to find the derivative of f(x) if:

a)
$$g(x) = 22x - 3$$
 and $h(x) = 3 - 7x$

b)
$$g(x) = x^{10} - 1$$
 and $h(x) = 3x^8 - 8x + 5$

c)
$$g(x) = x^{-3.5}$$
 and $h(x) = 3x^6 - 5x^5 + x$

c)
$$g(x) = x^{-3.5}$$
 and $h(x) = 3x^6 - 5x^5 + x^4$ d) $g(x) = \frac{1}{x^2}$ and $h(x) = x^4 - 4x + 230$

e)
$$g(x) = x^3 - \frac{1}{x^3}$$
 and $h(x) = 3\sqrt{x}$

f)
$$g(x) = 3x$$
 and $h(x) = 2e^x$

g)
$$g(x) = x$$
 and $h(x) = \ln(x)$

h)
$$g(x) = 5x \ln(x)$$
 and $h(x) = 6xe^x$

Problem 3 Suppose $f(x) = \frac{g(x)}{h(x)}$. Use the quotient rule $f'(x) = \frac{g'(x) \cdot h(x) - g(x) \cdot h'(x)}{\lceil h(x) \rceil^2}$ to find the derivative of f(x) if:

a)
$$g(x) = 11x - 3$$
 and $h(x) = 3 - 7x$

b)
$$g(x) = x + 5$$
 and $h(x) = 9x - 1$

c)
$$g(x) = 3x^2 + 1$$
 and $h(x) = x - 10$

d)
$$g(x) = x^6$$
 and $h(x) = x^4 + 1$

e)
$$g(x) = x^{1,2}$$
 and $h(x) = 5x^2 - 1$

f)
$$g(x) = 5$$
 and $h(x) = x^2 - 4x + 10$

g)
$$g(x) = 5 \ln(x)$$
 and $h(x) = x^2 + 3$

h)
$$g(x) = 2 \ln(x)$$
 and $h(x) = 3e^x$

i)
$$g(x) = \ln(x) + 1$$
 and $h(x) = \ln(x) + 2$

j)
$$g(x) = e^x + 1$$
 and $h(x) = e^x + 2$

Problem 4 In figure 1 you see the graph of f(x).

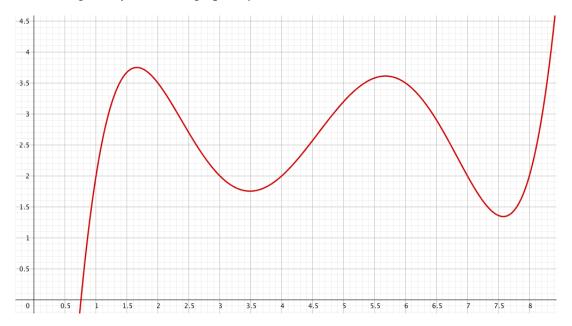


Figure 1: The graph of f(x)

Determine if the statement is true or false.

a)
$$f'(2) < f'(1)$$

b)
$$f'(3) < f'(6.5)$$

c)
$$f'(4.5) < f'(5.1)$$

d)
$$f'(2.5) < f'(3)$$

e)
$$f'(x)$$
 is positive for $6 < x < 7.5$

f)
$$f'(x)$$
 has no maximum points

g)
$$f'(x)$$
 has 4 zeros

h)
$$f'(x)$$
 is increasing in the interval [3, 4]

i)
$$f'(x)$$
 is decreasing in the interval [1, 2]

j)
$$f'(3) = 2$$

k)
$$f'(x)$$
 has a minimum point in the interval [2, 3]

Problem 5 Determine the expressions for f(x), u(x), g(u), u'(x) and g'(u) which are not given in the table such that f(x) = g(u(x)). Use the chain rule $f'(x) = g'(u(x)) \cdot u'(x)$ to find f'(x).

f(x)	u(x)	g(u)	<i>u</i> ′(<i>x</i>)	g'(u)	f'(x)
$(3x+5)^2$	3x + 5	u^2			
$2(x^2+3)^7+4$	$x^2 + 3$				
$7\sqrt{3x-1}$				$\frac{7}{2\sqrt{u}}$	
	$x^2 + 10$	$3e^u$			
$\ln(4x^2+5)$			8 <i>x</i>		
$9(4x^3+1)^{3.5}$					
$3\left(\frac{4x-1}{9x+2}\right)^7$					
$50e^{-0.03x}$					
$\ln(1+e^{-x})$					
$\frac{2}{(2x+1)\sqrt{2x+1}}$					

Problem 6 Determine f'(a).

- a) f(x) = g(x)h(x), a = 10, g(10) = 20, g'(10) = 0.2 and h(10) = 60, h'(10) = 0.5.
- b) $f(x) = \frac{g(x)}{h(x)}$, a = 7, g(7) = 20, g'(7) = 0.2 and h(7) = 10, h'(7) = 0.05.
- c) f(x) = g(u(x)), a = 3, g(3) = 12, g'(3) = -0.6, g(10) = 20, g'(10) = 1.07, u(10) = 1, u'(10) = 0, u(3) = 10, u'(3) = 2.

Problem 7 Determine which is the larger number:

a)
$$3^{5000}$$
 or 4^{4000}

c)
$$1.12^{1000}$$
 or 1.01^{12000}

Problem 8 (Multiple choice spring 2016, problem 10)

We have the function $f(x) = x^2 e^{2-x} - e \ln(\sqrt{e})$. The slope a for tangent of f in x = 2 is:

- (A) a = 2
- (B) $a = \frac{3}{2}$
- (C) a = 0
- (D) a < 0
- (E) I choose not to solve this problem.

Answers

Problem 1

Compare with other students, ask the learning assistants!

Problem 2

a)
$$87 - 308x$$

b)
$$54x^{17} - 88x^{10} + 50x^9 - 24x^7 + 8$$

c)
$$7.5 \cdot x^{1.5} - 7.5 \cdot x^{0.5} + 0.5 \cdot x^{-0.5}$$

d)
$$2x + 4x^{-2} - 460x^{-3}$$

e)
$$10.5 \cdot x^{2.5} + 7.5 \cdot x^{-3.5}$$

- f) $6(x+1)e^x$
- g) ln(x) + 1
- h) $30x[x \ln(x) + 2\ln(x) + 1]e^x$

Problem 3

a)
$$\frac{12}{(3-7x)^2}$$

b)
$$-\frac{46}{(9x-1)^2}$$

c)
$$\frac{3x^2 - 60x - 1}{(x - 10)^2}$$

d)
$$\frac{2x^5(x^4+3)}{(x^4+1)^2}$$

e)
$$-\frac{x^{0.2}(4x^2+1.2)}{(5x^2-1)^2}$$

f)
$$-\frac{10(x-2)}{(x^2-4x+10)}$$

a)
$$\frac{12}{(3-7x)^2}$$
 b) $-\frac{46}{(9x-1)^2}$ c) $\frac{3x^2-60x-1}{(x-10)^2}$ d) $\frac{2x^5(x^4+3)}{(x^4+1)^2}$ e) $-\frac{x^{0.2}(4x^2+1.2)}{(5x^2-1)^2}$ f) $-\frac{10(x-2)}{(x^2-4x+10)^2}$ g) $\frac{5[x^2+3-2x^2\ln(x)]}{x(x^2+3)^2}$ h) $\frac{2[1-x\ln(x)]}{3xe^x}$ i) $\frac{1}{x[\ln(x)+2]^2}$ j) $\frac{e^x}{(e^x+2)^2}$

$$h) \frac{2[1-x\ln(x)]}{3xe^x}$$

$$i) \frac{1}{x[\ln(x) + 2]^2}$$

$$j) \frac{e^x}{(e^x + 2)^2}$$

Problem 4



Figure 2: True or false

Problem 5

f(x)	u(x)	g(u)	u'(x)	g'(u)	f'(x)
$(3x+5)^2$	3x + 5	u^2	3	2u	18x + 30
$2(x^2+3)^7+4$	$x^2 + 3$	$2u^7 + 4$	2x	14 <i>u</i> ⁶	$28x(x^2+3)^6$
$7\sqrt{3x-1}$	3x-1	$7\sqrt{u}$	3	$\frac{7}{2\sqrt{u}}$	$\frac{10.5}{\sqrt{3x-1}}$
$3e^{x^2+10}$	$x^2 + 10$	$3e^u$	2x	$3e^u$	$6xe^{x^2+10}$
$\ln(4x^2+5)$	$4x^2 + 5$	ln(u)	8 <i>x</i>	u^{-1}	$\frac{8x}{4x^2+5}$
$9(4x^3+1)^{3.5}$	$4x^3 + 1$	9u ^{3.5}	$12x^2$	$31.5u^{2.5}$	$378x^2(4x^3+1)^{2.5}$
$3\left(\frac{4x-1}{9x+2}\right)^7$	$\frac{4x-1}{9x+2}$	3u ⁷	$\frac{17}{(9x+2)^2}$	21 <i>u</i> ⁶	$357 \cdot \frac{(4x-1)^6}{(9x+2)^8}$
$50e^{-0.03x}$	-0.03x	50e ^u	-0.03	50e ^u	$-1.5e^{-0.03x}$
$\ln(1+e^{-x})$	$1+e^{-x}$	ln u	$-e^{-x}$	u^{-1}	$-\frac{e^{-x}}{1+e^{-x}}$
$\frac{2}{(2x+1)\sqrt{2x+1}}$	2x+1	$2u^{-1.5}$	2	$-3u^{-2.5}$	$-6(2x+1)^{-2.5}$

Problem 6

a)
$$12 + 10 = 22$$
 b) $\frac{2-1}{10^2} = 0.01$ c) $f'(3) = g'(u(3)) \cdot u'(3) = 1.07 \cdot 2 = 2.14$

Problem 7

- a) $3^{5000} = (3^5)^{1000} = 243^{1000}$ while $4^{4000} = (4^4)^{1000} = 256^{1000}$
- b) $\ln(1.02^{4321}) = 4321 \cdot \ln(1.02) = 85.57$ and $\ln(1.025^{3478}) = 3478 \cdot \ln(1.025) = 85.88$. Because $\ln(x)$ is a strictly increasing function it follows that $1.02^{4321} < 1.025^{3478}$.
- c) 1000 years with 12% interest and annual compounding gives a smaller total growth factor than 1000 years with 12% interest and monthly compounding.

Problem 8

C