... if I couldn't formulate a problem in economic theory mathematically, I didn't know what I was doing.

R. Lucas

Lecture 6 and 7

Sec. 3.1-3, 4.7:

Linear and quadratic equations. Equations with parametres. Polynomial equations.

Here are recommended exercises from the textbook [SHSC].

Section **3.1** exercise 1-5 Section **3.2** exercise 2a, b, e, 4a, 5a, c Section **3.3** exercise 1, 2, 6

Repetition (I have translated them, see It's Learning under «Resources») Multiple choice exam 2017 autumn, problem 1-4 Multiple choice exam 2018 spring, problem 1, 2 and 4

Problems for the exercise session Wednesday 15 Sept. at 12-15 in D1-065 (or on Zoom)

Problem 1 Solve the linear equations for *x*.

a)
$$3x-5=0$$

b) $ax+b=0$
c) $cx+50-c=0$ ($c \neq 0$)
d) $-4x+9=3-0,25x$
e) $ax+b=cx+d$
f) $\frac{x}{4}+11-k=3-\frac{x}{3}$
g) $22-4x+9-2(x+7)=14-5(x+2)+x-23$
h) $k-bx-d(3-5x)+11=c$
i) $\frac{4}{x-2}=\frac{3}{2x+1}$
j) $\frac{5-x}{x-a}=7$
k) $\frac{6}{3x+6}=\frac{14}{2x+4}$

l)
$$5-7x = 4x + 29 - 11x$$
 m) $3(x + 1) = 3x + 3$

Problem 2 Solve the quadratic equations.

a)
$$x^2 = 0$$

b) $x^2 = 1$
c) $x^2 = -1$
d) $(x-3)^2 = 0$
e) $(x+3)^2 = 1$
f) $(x+3)^2 = -1$
g) $x^2 - 6x + 9 = 0$
h) $x^2 - 6x + 9 = 1$
i) $x^2 - 6x + 9 = -1$
j) $(3x-1)^2 = 0$
k) $(3x-1)^2 = 9$
l) $(3x-1)^2 = -9$
m) $9x^2 - 6x + 1 = 0$
n) $9x^2 - 6x + 1 = 9$
o) $9x^2 - 6x + 1 = -9$
p) $(x-2)(x+3) = 0$
r) $(x-2)(x+3) = -6$
s) $x^2 - 5x - 2 = 0$
t) $2x^2 + 4x = 70$
u) $x(x-8) = 90 - x^2$

Problem 3 Determine the quadratic equation $x^2 + bx + c = 0$ with the given solutions.

a) $x = 1, x = -1$	b) $x = 3, x = -2$	c) $x = -3, x = -8$
d) $x = 17, x = -3$	e) $x = 3 \pm \sqrt{5}$	f) $x = -11$

Problem 4 Solve the quadratic equations by completing the square.

a) $x^2 - 8x = -12$	b) $x^2 + 10x = -9$	c) $x^2 - 5x - 14 = 0$
d) $x^2 - 3x = 4$	e) $x^2 - 24x = 25$	f) $x^2 + 5x = 6$

Problem 5

a) Determine *k* such that the equation $x^2 - 10x = k$ has exactly one solution.

- b) Determine *k* such that the equation $x^2 kx = -9$ has exactly one solution.
- c) Determine k such that the equation $\frac{1}{k}x^2 14x = 12$ has exactly one solution.

Problem 6 Write the quadratic expression as a product of two linear (grade 1) polynomials.

a) $x^2 - 8x + 12$	b) $x^2 + 10x + 9$	c) $x^2 - 18x + 81$
d) $2x^2 - 4x - 70$	e) $3x^2 + 24x - 99$	f) $5x^2 + 60x + 180$

Problem 7

- a) Use one parameter to write an expression for all polynomials on the form $x^2 + bx + c$ which have two zeros of distance 1 from each other.
- b) Use one parameter to write an expression for all third degree polynomials on the form $x^{3} + ax^{2} + bx + c$ which have three zeros with the middle one of distance 5 to each of the other two.
- c) Use two parameters to write up all quadratic polynomials with exactly one zero.

Problem 8 Solve the equations for *x*.

- a) $(2x \sqrt{3})(x^2 20x + 99) = 0$
- b) $(x^2-5)(x^2-6x+4)=0$
- c) $(2x^2 28x + 98)(x^2 6x + 10)(x^2 2x 6) = 0$
- d) $(x+1)(x+2)(x+3)(x+a)(x^2+b) = 0$

Problem 9 Solve the equations.

a) $x^4 - 11x^2 + 18 = 0$ b) $x^6 + 13x^3 + 40 = 0$ c) $x^{100} - x^{50} - 12 = 0$

Problem 10 Solve the equations.

- a) $1 + x + x^2 + x^3 + \dots + x^{98} + x^{99} = 0$ b) $1 + x + x^2 + x^3 + \dots + x^{49} + x^{50} = 0$ c) $\frac{x}{1.02} + \frac{x^2}{1.02^2} + \frac{x^3}{1.02^3} + \frac{x^{29}}{1.02^{29}} + \frac{x^{30}}{1.02^{30}} = 0$

Answers

Problem 1

a)
$$x = \frac{5}{3}$$
 b) $x = -\frac{b}{a}$ c) $x = \frac{c-50}{c} = 1 - \frac{50}{c}$ d) $x = \frac{8}{5}$

e) $x = \frac{d-b}{a-c}$ if $a \neq c$. For a = c and $b \neq d$ there is no solution, for a = c and b = d all numbers are solutions.

f)
$$x = \frac{12k-96}{7}$$
 g) $x = 18$

h) $x = \frac{c+3d-k-11}{5d-b}$ if $b \neq 5d$. If b = 5d and $c + 3d \neq k + 11$ there are no solutions, if b = 5d and c + 3d = k + 11 all numbers are solutions.

i) $x = -2$	j) $x = \frac{7a+5}{8}$	k) no solutions	1)	no solutions
-------------	-------------------------	-----------------	----	--------------

m) all numbers are solutions

Problem 2

a) x = 0 b) x = 1, x = -1 c) no solutions d) x = 3e) either x + 3 = 1, i.e. x = -2, f) no solutions g) x = 3no x + 3 = -1, i.e. x = -4h) x = 2, x = 4 i) no solutions j) $x = \frac{1}{3}$ k) $x = \frac{1}{3} \pm 1$, i.e. $x = \frac{4}{3}, x = -\frac{2}{3}$ l) no solutions m) $x = \frac{1}{3}$ n) $x = \frac{4}{3}, x = -\frac{2}{3}$ o) no solutions p) x = 2, x = -3 q) $x = -\frac{5}{3}, x = \frac{1}{2}$ r) x = 0, x = -1 s) $x = \frac{5}{2} \pm \frac{\sqrt{33}}{2}$ t) x = -7, x = 5 u) x = -5, x = 9

Problem 3

a) $(x-1)(x-(-1)) = x^2 - 1$	b) $x^2 - x - 6$	c) $x^2 + 11x + 24$
d) $x^2 - 14x - 51$	e) $x^2 - 6x + 4$	f) $x^2 + 22x + 121$

Problem 4

a) $(x-4)^2 = -12 + 16$ gives	b) $(x+5)^2 = -9 + 25$ gives	c) $(x - \frac{5}{2})^2 = 14 + \frac{25}{4}$ gives
x = 2, x = 6	x = -9, x = -1	x = -2, x = 7
d) $(x - \frac{3}{2})^2 = 4 + \frac{9}{4}$ gives	e) $(x-12)^2 = 25 + 12^2$ gives	f) $(x + \frac{5}{2})^2 = 6 + \frac{25}{4}$ gives
x = -1, x = 4	x = -1, x = 25	x = -6, x = 1

Problem 5

a) k = -25 b) $k = \pm 6$ c) $k = -\frac{12}{49}$

Problem 6

a) $(x-2)(x-6)$	b) $(x+9)(x+1)$	c) $(x-9)^2$
d) $2(x+5)(x-7)$	e) $3(x+11)(x-3)$	f) $5(x+6)^2$

Problem 7

- a) If *r* is the smallest zero, the polynomial is $x^2 (2r + 1)x + r(r + 1)$.
- b) If r is the second smallest zero, the polynomial is
- (x r)³ 25(x r) = x³ 3rx² + (3r² 25)x (r 5)r(r + 5). c) $a(x - r)^2 = ax^2 - 2arx + ar^2$ ($a \neq 0$).

Problem 8

a) $x = \frac{\sqrt{3}}{2}, x = 9, x = 11$ b) $x = \pm\sqrt{5}, x = 3 \pm \sqrt{5}$ c) $x = 7, x = 1 \pm \sqrt{7}$ d) $x = -1, x = -2, x = -3, x = -a, x = \pm\sqrt{-b}$ for $b \le 0$

Problem 9

- a) $x = \pm \sqrt{2}$, $x = \pm 3$ (Hint: Substitute $u = x^2$)
- b) $x = -2, x = -\sqrt[3]{5}$
- c) $x = \pm \sqrt[25]{2}$

Problem 10

- a) x = -1
- b) no solutions
- c) x = 0, x = -1.02